前列腺癌 (PCa) 是男性中第二常见的癌症类型。已知 BRCA1 和 BRCA2 基因突变与乳腺癌和卵巢癌的进展有关,并且已分析表明其会增加罹患 PCa 的风险。生成有关 BRCA1 和 BRCA 基因表达特征的信息并将其与前列腺癌严重程度标准相关联,对于早期发现这种肿瘤的更具侵袭性的形式非常重要。从 89 名个体中收集了经直肠前列腺活检组织碎片样本。 84 名患者的样本被送去进行分子技术分析,通过聚合酶链式反应 (PCR) 获取 BRCA1 和 BRCA2 转录本表达的相对量。 26 名(30.90%)患者检测出 PCa 呈阳性,且 PSA 水平 > 10 ng/ml(p=0.019)。在 PCa 阳性患者中,BRCA1 和 BRCA2 基因在阴性片段中的中位表达较高,分别为 p=0.002 和 p=0.038。根据 Gleason 分类和 PSA 值,BRCA1 和 BRCA2 基因的表达没有统计学差异。与未患前列腺肿瘤的个体的片段相比,前列腺癌患者的阴性片段中 BRCA1 和 BRCA2 基因的中位表达更高。了解 BRCA1 和 BRCA2 基因的表达、突变与 PCa 发展之间的关系仍然是一项重大挑战。然而,这些基因在癌症患者的阴性片段中表达较多可能推断出它们与恶性表型的发展之间的关系,这可以通过分析大量样本并因此将其与这种疾病的进程联系起来得到证实。
关键词 癌症,癌症干细胞,不道德化,衰老,去分化,治疗,A.2。先前职位(研究活动中断,第 14.2.b)条) 时间 职位/机构/国家/中断原因 9-2009/2012 高级科学家/塞维利亚生物医学研究所 (CSIC) 01-2001/9-2009 组长/国家肿瘤研究中心 04-2000/10-2001 高级讲师/WIBR,伦敦大学学院(伦敦,英国) 07-1997/04-2000 高级研究科学家/儿童健康研究所(伦敦,英国) 01-1996/07-1997 博士后/冷泉港实验室(纽约,美国) 01-1995/09-1995 副教授/系马德里自治大学 生物化学 01-1994/01-1995 博士后 / 生物医学研究所 (CSIC) 01-1990/01-1994 博士前 / 生物医学研究所 (CSIC) A.3.教育背景 博士,执业资格,研究生 大学/国家 年份 理学学士(生物学) 格拉纳达大学 1989 年 11 月
产铁载体率为37.95–49.55%。其固氮能力范围为49.23至151.22 μg/mL。这些菌株对植物病原菌具有很强的拮抗活性。特别是,A. chroococcum B-4148和A. vinelandii B-932抑制了禾谷镰刀菌、Bipolaris sorokiniana和Erwinia rhapontici的生长,而P. chlororaphis subsp. aurantiaca B-548对禾谷镰刀菌和B. sorokiniana表现出拮抗作用。由于所有测试菌株都具有生物相容性,因此它们被用于形成多个联合体。协同效应最大的菌群是菌群 6,其包含的菌株 B-4148、B-932 和 B-548 的比例为 1:3:1。该菌群的最佳营养培养基包含 25.0 g/L Luria-Bertani 培养基、8.0 g/L 糖蜜、0.1 g/L 七水硫酸镁和 0.01 g/L 硫酸锰水溶液。最佳培养温度为 28°C。我们研究中创建的微生物菌群在农业实践中具有很高的应用潜力。进一步的研究将集中于其在体外条件和田间试验中对植物(特别是谷类作物)生长发育的影响。
Sabo 目前是史密斯堡阿肯色大学阿肯色州小企业和技术发展中心的区域主任。Sabo 对路易斯安那州并不陌生,在担任阿肯色州现任职务之前,他曾担任新奥尔良商业联盟的食品、音乐和技术总监;他还在新奥尔良市长 Mitch Landrieu 手下工作,实施白宫经济发展计划,为非传统技术候选人创造培训和职业道路,让他们接受入门级技术工作的培训。
Andrea De Marcellis 分别于 2005 年和 2009 年获得拉奎拉大学(意大利)电子工程学位和微电子博士学位。目前,他是拉奎拉大学(意大利)信息工程、计算机科学和数学系的电子学副教授。他是自动锁定放大器专利(编号 RM2008-A000194,意大利,2008 年)的共同发明人,也是一本书、两本书章节和 170 多篇国际期刊出版物(超过 60 篇论文)和会议论文集的合著者,引用次数为 1507 次,H 指数为 23。
[1] Sazali, N.、Salleh, W.、Nordin, N. 和 Ismail, A. (2015)。基于基质的碳管膜:碳化环境的影响。《工业与工程化学杂志》,第 32 卷,第 167-171 页。[2] Sazali, N.、Salleh, W.、Ismail, A.、Nordin, N.、Ismail, N.、Mohamed, M. 和 Jaafar, J. (2018)。在碳膜开发中加入热不稳定添加剂,实现卓越的气体渗透性能。《天然气科学与工程杂志》,第 49 卷,第 376-384 页。[3] Sazali, N.、Salleh, W. 和 Ismail, A. (2017)。由纳米晶体纤维素与 P84 共聚酰亚胺混合制成的碳管膜可用于 H2 和 He 分离。国际氢能杂志,42(15),9952-9957。[4] Ismail, N., Salleh, W., Sazali, N., Ismail, A., Yusof, N., & Aziz, F. (2018)。喷涂法制备圆盘支撑碳膜:碳化温度和气氛的影响。分离与净化技术,195,295-304。[5] Ismail, N., Salleh, W., Sazali, N., & Ismail, A. (2018)。一步涂覆-碳化循环制备圆盘支撑碳膜的开发和表征。工业与工程化学杂志,57,313-321。[6] Sazali, N., Salleh, WN, Nordin, NA, Harun, Z., & Ismail, AF (2015)。基于基质的碳管状膜:聚合物组成的影响。《应用聚合物科学杂志》,132(33)。[7] Sazali, N.、Salleh, W.、Ismail, A.、Kadirgama, K. 和 Othman, F. (2018)。P84 共聚酰亚胺基管状碳膜:加热速率对氦分离的影响。《固态现象》,280,308-311。[8] Sazali, N.、Salleh, WN、Ismail, AF、Wong, KC 和 Iwamoto, Y. (2018)。利用热解方案对 BTDA-TDI/MDI (P84) 聚酰亚胺/纳米晶体纤维素碳膜进行气体分离。 Journal of Applied Polymer Science, 136(1), 46901。[9] Ismail, NH, Salleh, WN, Sazali, Ismail, AF (2017)。中间层对盘式支撑碳膜气体分离性能的影响。分离科学与技术,52(13), 2137-2149。[10] Sazali, N., Salleh, W., Ismail, A., Ismail, N., Yusof, N., Aziz, F., Kadirgama, K. (2019)。中间层对盘式支撑碳膜气体分离性能的影响