智能家居/城市是物联网的重要体现之一,2 涉及各种类型的电子设备,如智能照明系统、3、4 音频视频设备和安全系统。5 其中,语音激活智能照明可以翻译语音命令,实现对灯光的控制。目前,发光二极管 (LED) 和有机发光二极管 (OLED) 已成为智能家居/城市的流行照明系统,6 而具有可调色发射的有机荧光材料是 OLED、7 生物传感、生物成像、8、9 防伪等潜在应用的重要组成部分。 10 与无机荧光粉相比,有机材料具有精确的分子结构,且分子骨架易于修改,有利于获得具有奇妙光物理性质的各种荧光材料,例如稳定的发光自由基、11 颜色可调的发射,以及单线态裂变、12 室温磷光 13 等。14,15 因此,人们致力于开发新型有机荧光材料,以实现具有先进应用的高科技有机电子器件。此外,已经构建了许多用于多色发射以及白光发射的可调荧光发射有机分子,例如比率响应发光材料、16
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年4月1日发布。 https://doi.org/10.1101/2024.03.28.585318 doi:Biorxiv Preprint
光遗传学工具箱中的一种众所周知的现象是,所有光门控离子通道(包括红移的通道旋转蛋白(CHRS))都被蓝光激活,而蓝移Chrs对更长的波长的响应最小。在这里,我们利用此功能创建了一个系统,该系统允许具有红光脉冲的神经元高频激活,同时允许通过Blue Light的毫秒精度抑制动作电位。我们通过将超快速的红色CHR与适当匹配的动力学匹配的蓝色光敏感阴离子通道配对来实现这一目标。这需要筛选几个阴离子选择性CHRS,然后进行基于模型的诱变策略,以优化其动力学和光谱。海马中的切片电生理学以及对颤音运动的行为检查表明,蓝光的激发最少。允许对具有红光的神经元进行高频光学遗传激发,而蓝光抑制动作电位在光脉冲的持续时间内被罚款。
是否附上了自您上次疫苗订单以来的体温记录? 是 否 不会发放疫苗 对于有资格要求接种疫苗的客户,必须收集客户信息。
抽象的高粱双色是一种重要的全球作物,适合于玉米或米饭更炎热,更干燥的条件下壮成长,具有与独特且分层的土壤微生物组相互作用的深根,在植物健康,生长和碳存储中起着至关重要的作用。对农业土壤的微生物组研究,尤其是生长二色的田地,主要限于表面土壤(<30 cm)。在这里,我们研究了土壤特性,田间位置,深度和高粱类型的生物因子的非生物因素,跨土壤微生物组上的38种基因型。利用16S rRNA基因扩增子测序,我们的分析揭示了微生物组成的显着变化,并且无论基因型或田间如何,双色链球菌内的土壤深度增加。值得注意的是,特定的微生物家族,例如热蛋白孢子科和ABS-6阶内未分类的家族,富含30厘米以上的更深的土壤层。此外,微生物的丰富度和多样性的深度下降,在60-90 cm层达到最低限度,而层的多样性则超过90 cm。这些发现突出了土壤深度在农业土壤微生物组研究中的重要性。
摘要。受实验观察 [1] 的启发,驱动具有弱无序性的 3D 盒子中的非相互作用玻色气体会导致幂律能量增长,E ∝ t η,η = 0.46(2),以及显示动态缩放的压缩指数动量分布,我们对该系统进行了系统的数值和分析研究。薛定谔方程模拟表明,随着无序强度的增加,η ≈ 0.5 到 η ≈ 0.4 的交叉,暗示存在两种不同的动力学状态。我们提出了一个半经典模型,该模型可以捕捉模拟结果,并允许从能量空间随机游动的角度理解动力学,从中可以分析获得从 E ∝ t 1/2 到 E ∝ t 2/5 缩放的交叉。这两个极限对应于随机游动受到弹性无序引起的散射速率或驱动器可以改变系统能量的速率的限制。我们的结果为进一步的实验提供了理论基础。
NCI NPB Agreements for Pre-fractionated Samples • >680,000 fractions so far produced from NCI crude extracts • Pre-fractionated library of 500,000 natural product samples publicly released • >9,000,000 wells shipped to screening centers so far • Technology transfer of methods and automated systems to groups worldwide • >70 MTAs signed with industry, government, and academic screening centers
建议从中子陷阱中超冷的中子的异常泄漏可能与其中的多核子形成有关。表明,即使在没有二氧化酮作为游离稳定颗粒的情况下,温度t小于10 -3 k的超低中子的气体也应形成培养基bose冷凝物。考虑了中子星中葡萄球子的稳定性的假设而产生的后果。讨论了在其中和沉重的核中形成bose冷凝物的条件。
微结构或纳米结构会引起衍射、干涉和散射。[3] 以这种方式产生的结构色通常与角度有关(彩虹色),与光吸收产生的颜色相比,结构色更鲜艳、可调且稳定。[4] 到目前为止,已有多种光子结构被用于产生结构色并取代传统的色素沉着。这些包括可调高折射率光子玻璃、微米级球形胶体组件和衍射光栅结构。[5,6] 虽然仿生光子结构已被用于创造高度饱和的结构色,但它们制造困难且成本高,不适合大规模生产。此外,整个可见光谱范围内对新的仿生结构色的需求尚未得到满足。因此,更好地理解结构着色的潜在机制无疑将改善颜色特性和寿命。虽然自然界中存在大量结构色的例子,但由于蝴蝶翅膀的光子纳米结构颜色鲜艳,因此人们对其的研究兴趣颇多。[7,8] 例如,Vigneron 等人发现,Pierella luna(月神蝴蝶)翅膀鳞片产生的彩虹色效应是由整个鳞片的宏观变形引起的,当翅膀被白光照射时,就像衍射光栅一样分解
摘要:结构颜色是一种引人入胜的光学现象,它是由复杂的光 - 物质相互作用引起的。来自天然聚合物的生物结构颜色在仿生设计和可持续结构中是无价的。在这里,我们报告了一种可再生,丰富且可生物降解的有机凝胶,该有机凝胶会产生具有生动结构颜色的稳定胆固醇液晶结构。我们使用68 wt%羟丙基纤维素(HPC)基质构建色凝胶,结合了不同的聚乙烯乙二醇(PEG)宾客分子。PEG包含具有定制极性的奇特端基团,可以通过PEG和HPC链之间的静电排斥在HPC螺旋主链上精确定位。这可以保留HPC的手性列相,而不会受到干扰。我们证明了钉子的极性会调谐HPC凝胶的反射色。此外,具有可变极性的凝胶对温度,压力和拉伸高度敏感,从而导致快速,连续和可逆的颜色变化。这些特殊的动态特征建立了手性列凝胶,作为跨显示,可穿戴设备,柔性电子,健康监测和多功能传感器的下一代应用的出色候选者。关键字:手性列结构,羟丙基纤维素,螺距,聚乙烯乙二醇,结构颜色