(iv)在HSCT后1小时至100天内输注。在患有CMV晚期感染和疾病的患者中,HSCT后200天内可能会继续前进。(2.1,2.3)○肾脏移植:480 mg每天口服一次或作为静脉输注,在移植后1小时至200天内输注。(2.1,2.3)•小儿患者6个月至小于12岁或12岁以下的患者,年龄较大,体重小于30 kg HSCT接受者:○HSCT:基于每天口服一次或以IV次输注1小时至100天至HSCT的剂量。在患有CMV晚期感染和疾病的患者中,HSCT后200天内可能会继续前进。(2.1,2.5)•必须在给药前稀释Prevymis注射。(2.1)•必须通过无菌0.2微米或0.22微米聚乙烯(PES)在线滤波器进行预注射。(2.1,2.10)•预防预防后,建议监测HSCT受体中的CMV重新激活。(2.2)•调整剂量:如果与环孢素共同管理Prevymis,则12岁及以上的成人和儿科患者应每天降低剂量为240 mg。(2.4)如果Prevymis在小儿患者中与环孢霉素共同管理小于12岁,则可能需要调整剂量。(2.6)•应遵循使用说明,以准备和给药。(2.9)•请勿使用IV袋和含有增塑剂二乙基苯甲酸酯(DEHP)的注射材料(DEHP)注射。(2.10,2.13)
ShieldUp® Flex 柔性亚克力板材让设计师在设计 2D 作品时拥有更大的自由度,并简化了制造流程。Lalou Roucayrol 的新型三体船 Arkema 4 就证明了这一点,其窗玻璃就采用了 ShieldUp® Flex 亚克力玻璃。这款全球首创的产品是一个很好的典范,为其进军许多其他市场奠定了基础。ShieldUp ® Flex 亚克力板材是透明柔性塑料领域的一项重大创新,可以手动弯曲,无需热成型。这项技术革命为设计 2D 曲面件或其他需要柔性材料的件节省了时间和金钱。位于法国 Lacq 研究中心的 Altuglas International 研究团队成功克服了 PMMA 的一个关键技术障碍,PMMA 此前以刚性著称。ShieldUp ® Flex 板材已变得柔性,无需添加任何增塑剂,也不会改变其性质。此外,ShieldUp ® Flex 材料具有极强的耐化学性和抗冲击性,使这一专利创新成为需要透明度、耐用性、轻质性、抗冲击性和灵活性的项目的理想解决方案。Arkema 4 的建造者 Lalou Roucayrol(该集团的新型 Multi50 级三体船)专门为船舶的玻璃窗(屋顶和驾驶舱)寻找这种前所未有的优势组合:• 在极端天气条件下具有完美的可视性和非常强的抗冲击性,以提高船长的安全性• 通过使用更薄的板材,显着减轻重量,进一步追求提高船舶性能水平的不断追求
摘要:可持续高性能聚合物配方的开发,可能显示出多功能特征,对于与循环经济议程一致的材料生产至关重要。这项工作着重于制备来自Furan基聚酯和天然提取物的完全生物量衍生的混合物,以产生创新的包装系统。萜类化合物和suberin单体是通过简单明了的方法论中的很大的废物生物量分离的,即桦树皮,并与聚(己二甲基呋喃酸盐)混合(PHF)。混合物的物理力学特性证据了表面疏水性的调节,以及由于提取物施加的双重功能而显着提高了柔韧性和韧性,由于提取物的双重功能,它们既充当增塑剂,又充当交叉链接分子,因此由于弱相互作用的形成,例如氢键,例如氢键,例如与微分球链球链球链球链球链球链球链球,phffffffffffffffffffffffffffffffffffffffffffffffffffffffff phfffffff p ph phffem上含量很高,例如氢键,例如微链球链球链球链球链球链球。对功能性能的评估强调,PHF的优秀气体屏障特性不仅保留了;相反,由于存在增加的脱节浓度,有利于CO 2的扩散,因此测量了CO 2 /O 2的渗透率比。最后,自然提取物的添加允许在原始聚合物中实现抗氧化剂和抗菌特征。关键词:聚(六甲基素呋喃酸盐),suberin,树皮提取物,抗氧化活性,抗菌活性,可持续包装,活性包装,生物基聚合物■简介
(iv)在HSCT后1小时至100天内输注。在患有CMV晚期感染和疾病的患者中,HSCT后200天内可能会继续前进。(2.1,2.3)○肾脏移植:480 mg每天口服一次或作为静脉输注,在移植后1小时至200天内输注。(2.1,2.3)•小儿患者6个月至小于12岁或12岁以下的患者,年龄较大,体重小于30 kg HSCT接受者:○HSCT:基于每天口服一次或以IV次输注1小时至100天至HSCT的剂量。在患有CMV晚期感染和疾病的患者中,HSCT后200天内可能会继续前进。(2.1,2.5)•必须在给药前稀释Prevymis注射。(2.1)•必须通过无菌0.2微米或0.22微米聚乙烯(PES)在线滤波器进行预注射。(2.1,2.10)•预防预防后,建议监测HSCT受体中的CMV重新激活。(2.2)•调整剂量:如果与环孢素共同管理Prevymis,则12岁及以上的成人和儿科患者应每天降低剂量为240 mg。(2.4)如果Prevymis在小儿患者中与环孢霉素共同管理小于12岁,则可能需要调整剂量。(2.6)•应遵循使用说明,以准备和给药。(2.9)•请勿使用IV袋和含有增塑剂二乙基苯甲酸酯(DEHP)的注射材料(DEHP)注射。(2.10,2.13)
有几本书涉及炸药、推进剂和烟火技术,但最近出现的高能材料 (HEM) 的最新信息大多以研究/评论论文的形式散布在文献中。本书是第一本将过去 50 年来文献中积累的材料知识与先进材料的最新发展精心融合在一起的书,并从最终用途的角度阐述了它们的潜力。本书包含六个章节。本书第一章介绍了炸药的显著/基本特征、军用炸药的额外要求及其应用(军事、商业、太空、核能和其他),第二章根据炸药的特殊特性重点介绍了当前和未来炸药的现状。此外,本章还重点介绍了该领域未来的研究范围。第 3 章主要介绍了炸药及其配方的加工和评估的重要方面。第 4 章介绍了广泛用于各种军事和太空应用的推进剂。本章的主要内容致力于高性能和环保氧化剂 (ADN 和 HNF)、新型粘合剂(如丁苯、ISRO 多元醇和其他最先进的高能粘合剂 [GAP、NHTPB;聚(NiMMO)、聚(GlyN)等)的不同方面,高能增塑剂(BDNPA/F、Bu-NENA、K-10 等)以及其他成分,这些成分可能在增强未来推进剂在各种任务中的性能方面发挥关键作用。本章还包括火箭推进剂的抑制和火箭发动机的绝缘及其最新发展。第 5 章讨论了构成爆炸物和推进剂相关任务不可或缺的烟火技术,而第 6 章讨论了对所有在高能材料 (HEM) 领域工作的人来说至关重要的爆炸物和化学安全。JP Agrawal 博士是国际公认的著名爆炸物和聚合物科学家,也是一位出色的作家,发表了大量研究成果。他在书中所写的丰富经验和国际高能材料知识是新一代高能材料科学家和火箭技术人员的宝贵财富。
在硬胶囊的形成中,来自海藻的抽象角叉菜趋于脆弱。在这项研究中,合成了基于角叉菜胶的生物复合材料,为明胶硬胶囊提供了替代方案。这项研究旨在表征碳胶胶生物复合材料的机械性能,其氯化胆碱(CHCL)和甘油含有深层溶剂(DES)。Cargageenain生物复合材料以不同的浓度(0、0.2、0.4、0.6、0.8和1.0 v/v%)的形式配制,以提高角叉菜胶生物复合膜和硬胶囊的强度和弹性。在1348cm⁻⁻处的CHCL带不存在Chcl带,而在DES的Atr-FTIR光谱中,C – O甘油带的强度降低被视为形成共晶混合物的证据。这可以通过DES成分之间的氢键供体和受体相互作用来解释,DES成分是Chcl的氯离子(Cl-)和甘油(Cl - ··OH)的羟基(–OH)的氯离子(Cl-)。在504.9 MPa时,Carra-DES 0.2的最高粘度反映了高达60.1 MPa的改善膜拉伸强度,在添加DES后产生了积极的效果。CARRA-DES 0.4的胶囊环强度在31.7 n处达到其峰值。观察到Carra-DES薄膜中断时的伸长率显着增加,DES浓度为0.2-0.6%。但是,应控制DES的浓度以在硬胶囊应用中实现高拉伸和环的强度。总而言之,在角叉菜胶生物复合材料中掺入DES可以降低其脆性,同时改善其在硬胶囊生产中的弹性和强度。关键词:生物复合材料,角叉菜胶,胆碱氯化物,深晶溶剂,增塑剂
加工Vinnol®H15/45 m(可再生能量)通常以溶解形式使用。酮和酯是Vinnol®H15/45 m(可再生能量)最常用的溶剂,酮比酯更有效。是真正的溶剂,而三氯乙烯和四氯乙烯仅具有溶胀效应。醇和脂肪液碳氢化合物不会溶解Vinnol®H15/45 m(可再生能量)。芳香烃可以与真实溶剂合并到有限的程度上。vinnol®H15/45 m(可再生能量)可以用单体和聚合物增塑剂(例如邻苯二甲酸盐,脂肪酸盐,sebacates,柠檬酸盐,柠檬酸盐,磷酸盐,环氧化物和氯氧化物氧化物)塑化。vinnol®H15/45 m(可再生能源)与所有其他Vinnol®表面涂层树脂完全兼容。它也与许多丙烯酸聚合物和酮树脂以及一些环氧化物结合在一起。醇酸树脂,硝酸纤维素,聚乙烯基乙酸酯和聚乙烯基丁烷通常与Vinnol®H15/45 m(可再生能量)不相容。我们建议始终检查Vinnol®H15/45 m(可再生能量)与相关聚合物的兼容性。必须在初步测试中检查Vinnol®H15/45 m(可再生能量)与颜料或着色剂的兼容性。某些颜料/着色剂可能会产生触变作用和/或损害粘附。使用含有锌或镉的颜料时必须注意,因为它们会在温度升高时催化VC共聚物的分解。也适用于铁氧化物色素。尽管固有的稳定性良好,但某些应用必须根据Vinnol®H15/45 m(可再生能量)稳定涂层,以针对热和/或紫外线进行稳定。环氧化合物通常足以稳定这些涂层,以防止低热撞击。涉及较高温度的地方,建议使用钙/锌或有机素稳定剂。户外应用需要额外使用紫外线稳定器以及针对这些条件优化的热稳定器。为了避免出现变色的风险,应在制备溶液和随后的产品存储期间避免与铁接触。vinnol®基于表面涂料化合物应存储在涂层容器中。
雌激素调节鱼和其他脊椎动物中的许多生殖过程。在鱼类中,大脑,垂体和肝脏是脑垂体 - 甲状腺肝轴雌雄同体的主要作用部位。在脑因子的影响下,垂体合成促性腺激素,在雌性鱼类中,促促性蛋白刺激雌二醇的合成,从而刺激肝脏中的卵巢生成(1,2)。雌激素还通过大脑和垂体中的反馈机制来调节促性腺激素的合成并释放(3-5)。因此,作用在雌激素靶组织(例如肝脏和垂体)上的雌激素化合物有可能干扰鱼类的生殖过程。在过去的几十年中,环境中的内分泌破坏化学物质(EDC),尤其是模仿人为化合物(Xenostrogens)的雌激素,引起了人们对它们对人类和野生动植物健康的潜在影响的担忧(6,7)。工业化合物,例如增塑剂双酚A(BPA)和药物雌激素乙基甲二醇(EE2),是在环境中无处不在的内分泌干扰物中广泛研究的(8-12)。BPA是一种高生产量工业化学化学化学物质,主要用于制造塑料产品和使用的环氧树脂,例如,食品包装金属罐的表面涂层(13)。BPA已被证明具有雌激素作用,也可能导致代谢破坏(14、15)。最近的研究还报道说,许多BPA替代方案具有与BPA相似的内分泌干扰作用(13,16)。ee2用于避孕药中,经常在家庭污水中检测到,并可能污染水生环境(17 - 19)。ee2是一种有效的雌激素,许多研究都记录了其内分泌干扰作用,例如卵黄蛋白的合成增加,男性鱼类女性化,生育率降低和人口下降(12,20 - 20 - 26)。大多数研究都研究了这些EDC在鱼类中的分子效应,主要使用有限的生物标志物(例如植物生成素)(27,28)。虽然雌激素反应式生物标志物在暴露于雌激素方面具有丰富的信息,但它们提供了有限的有关影响的潜在目标和过程的信息。最近的一些基于转录组的研究表明,OMICS确定可能提供更多见解
木质纤维素生物质是新兴生物经济的主要原料之一,将在替代石油基化学品和材料方面发挥关键作用,并通过提供可再生、碳中性的能源来帮助应对全球变暖。然而,由于其化学和结构复杂性,将木质纤维素转化为商品和高价值产品需要结合物理、生物和化学过程,并更好地了解其在不同规模上的组成和结构,以使这种转化高效且具有经济竞争力。重要的是,木质纤维素转化还可以为市场带来新颖和可持续的化学品,从而带来新的应用和新的行业,以取代化石碳的开采和燃烧。特别是,利用木质素和纤维素和半纤维素中的芳香分子可以生产生物基溶剂、表面活性剂、增塑剂、营养和化妆品的功能性添加剂以及救命药物。除了这些种类繁多的化学品外,从木质纤维素生物质中分离出的纤维素纤维和颗粒也越来越多地用于生产复合材料。总体而言,本研究主题旨在说明互补方法在解决不同形式木质纤维素生物质的解构问题以及将其转化为有价值的生物基可再生产品所需的各种工艺方面的重要性。本研究主题包括 16 篇原创论文:14 篇研究论文、一篇综述和一篇小型综述,专门介绍使用先进的化学、物理和生物化学途径对生物基化学品和材料进行改性、表征和制备。Glasser 的综述专门介绍木质素在材料中的应用,介绍了如何通过化学改性轻松定制这组芳香族生物聚合物以获得特定性能,以及如何通过木质素化学功能化等相容化策略克服未改性木质素在制造先进材料时通常遇到的限制。 Zoghlami 和 Paës 的这篇小型评论介绍了化学和结构因素对木质纤维素生物质不稳定性的影响以及评估这些因素的最先进技术的最新调查,以及预测水解难易程度的最新光谱和水相关测量。除了这两篇评论文章外,还有几篇文章详细介绍了预处理如何促进生物质加工中的后续反应。Sipponen 和 Österberg 评估了氨水在将木质素从热液预处理的小麦秸秆中分离出来之前对木质素的影响。
产品概述DOW的微电子硅胶粘合剂旨在满足微电子和可选的电子包装行业的关键要求,包括高纯度,耐水性,热和电气稳定性。该产品具有极高的应力松弛和高温稳定性,并且很好地粘附在各种底物材料和组件上,而无需底漆。它也适用于需要具有低模量的材料,无铅焊接温度(260°C)或其他需要高可靠性的应用。该产品是一种易于使用的单组分产品,在热固化反应过程中不会产生副产品。固化的产品表现出极好的电绝缘。 清洁底物表面以清洁底物的表面,并用诸如Dow Corning Brand OS液体,Naphtha,矿物精神或甲基乙基酮(MEK)等溶液清除油性污渍。建议在可能的情况下进行表面的光抛光,以达到由于粘附面积增加而获得稳定的粘附特性。最后,用溶剂擦拭表面有助于去除粘附于标准表面上左侧的残留物。根据贴材和周围组件的特性,其他清洁方法可能有效,因此请确定哪种方法最适合您的个人情况。 基本材料测试有多种类型的底物,底物的表面条件因一种而异,因此不可能提供对粘附条件和粘附强度的一般解释。拉伸粘附试验需要对粘附层的100%内聚力分解,以实现针对特定底物的最高粘附强度。根据确定凝聚力分解,可以确定粘合剂和靶标底物之间的兼容性以及粘附所需的加热时间。另外,可以使用凝聚力的确定来确认表面污染的存在,例如霉菌释放剂,油,油脂和氧化物涂层。 兼容性某些材料,化学物质,交联和增塑剂可能会导致添加粘合剂的固化抑制。典型的固化抑制剂包括有机素,其他有机金属化合物,含有器官蛋白催化剂,硫,多硫化物,多硫酮,其他含硫的材料,不饱和烃塑料塑料化合物和焊料磁通残留物。如果底物或材料可能会导致治疗抑制作用,我们建议您针对您的预期应用进行小规模的一致性测试。如果底物和固化产物之间的界面处有液体或未固定的部分,则其在底物上的使用是不兼容的,并且表示治愈抑制作用。 如果您需要去除DOW电子粘合剂以进行缺陷分析,则可修复性道琼斯水平的流体很有用。有关这些产品的更多信息,请联系Dow。 使用的预防措施:此数据表中不包括使用所需的安全信息。在使用之前,请仔细阅读安全数据表(SD)和容器标签,以获取有关安全使用以及身体和健康危害的信息。您可以通过访问网站Dow.com/ja-jp购买安全数据表(SD)。