增材制造 (AM) 技术在金属 3D 打印过程中的灵活性已引起研究和工业界的广泛关注,该技术可用于制造复杂且精密的近净成形 (NNS) 几何设计。实现电弧增材制造 (WAAM) 部件的预期特性主要取决于对重要加工变量的仔细选择和精确控制,包括焊珠沉积策略、焊丝材料、热源类型、焊丝送料速度和保护气体的应用。因此,优化这些最重要的工艺参数的方法已得到改进,从而生产出更高质量的 WAAM 制造部件。因此,这有助于该方法的普及度和许多应用的全面提升。本文旨在概述 WAAM 中的焊丝沉积策略和工艺参数的优化。总结了制造高质量增材制造金属部件所需的 WAAM 方法中的多种线材沉积技术和工艺参数的优化。提出了 WAAM 优化算法,并预测了技术发展。随后,讨论了在快速发展的 WAAM 领域中 WAAM 优化的潜力。最后,从所审查的研究工作中得出结论。
摘要:在船舶的大部分生命周期中,海运业备件的获取都受到限制。造成这种限制的原因既有船舶与供应商之间的地理距离,也有零件交付的周转时间通常很短。虽然可以在船上制造一些零件,但这是一个耗时且劳动密集的过程。先进的制造技术可以结合直接能量沉积 (DED) 所需的材料特性和灵活性以及计算机数控 (CNC) 制造的更高尺寸公差,从而改善海上备件的获取。本研究使用多标准决策分析方法,评估了在不同模式下,作为海上资产资本投资的船上实施先进制造技术与不进行船上先进制造的选项的可行性。为此,采用了一种按与理想解的相似性排序技术 (TOPSIS),考虑了决策过程的技术经济和环境方面以及新研究领域带来的固有挑战。最后,在船舶和海上能源资产可持续未来的范围内讨论了使用增材制造进行船上维护所面临的挑战、机遇和途径。
摘要:钨 (W) 和钨合金被视为面向等离子体的部件 (PFC) 的主要候选材料,这些部件必须在温度、中子通量、等离子体效应和辐照轰击等恶劣环境下工作。由于这些技术固有的问题,这些材料很难使用增材制造 (AM) 方法生产。本文回顾了将 AM 技术应用于 W 基 PFC 应用的进展,并讨论了所选制造方法中的技术问题。具体而言,我们重点关注激光粉末床熔合 (LPBF)、电子束熔化 (EBM) 和直接能量沉积 (DED) 在 W 材料中的最新发展和应用,因为它们能够保留 W 作为潜在 PFC 的特性。此外,我们还调查了有关辐照对 W 和 W 合金的影响的现有文献,并讨论了其中这些问题的可能解决方案。最后,本文确定并概述了未来增材制造 W 研究中可能存在的差距。
开发具有以下特征的新型高温合金:(1)。高机械强度完整性;(2)。高抗氧化性;(3)。高抗渗碳性。所设计的合金有望应用于在高温(超过 750 ºC,例如 800 ºC)和高压(30 MPa)下在 sCO 2 中运行的热交换器。
2024 年 4 月 1 日 — 定向能量沉积。航空航天。能源。健康。时尚。移动性。人工智能。生物打印。食品。电子。建筑。GVC...
本文报道了通过相场模拟解决材料科学悬而未决的问题的最新突破。它们涉及增材制造中的凝固结构形成、贝氏体转变过程中的碳重新分布以及高温合金高温蠕变过程中的损伤开始。第一个例子涉及凝固过程中外延生长和成核之间的平衡。第二个例子涉及贝氏体转变中扩散控制和块状转变占主导地位的争议。第三个例子涉及高温合金中的定向粗化(筏化),这是一种扩散控制的相变:沉淀物相干性的丧失标志着与晶格旋转和拓扑反转相关的损伤的开始。本文根据需要回顾了相场法的技术细节,并讨论了该方法的局限性。
© 2024 作者。开放存取。本文根据知识共享署名 4.0 国际许可协议授权,允许以任何媒介或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的致谢中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。