在室温下在室温下旋转石墨烯中的漩涡量,Marius L. Palm 1†,Chaoxin ding 1†,William S. Huxter 1†,Takashi Taniguchi 2,Kenji Taniguchi 2,Kenji Watanabe 3和ChrisɵanL. degen L. degen L. degen 1,4 * 2材料研究中心纳米构造,材料科学的naɵtute,1-1纳米基,tsukuba,日本305-0044; 3日本的材料科学材料科学和材料科学研究中心,材料科学材料科学,日本1-1 Namiki,日本;瑞士苏黎世8093号苏黎世市Quantum Center 4。 ∗应向谁解决;电子邮件:degenc@ethz.ch。 †这些作者也同样贡献。在室温下在室温下旋转石墨烯中的漩涡量,Marius L. Palm 1†,Chaoxin ding 1†,William S. Huxter 1†,Takashi Taniguchi 2,Kenji Taniguchi 2,Kenji Watanabe 3和ChrisɵanL. degen L. degen L. degen 1,4 * 2材料研究中心纳米构造,材料科学的naɵtute,1-1纳米基,tsukuba,日本305-0044; 3日本的材料科学材料科学和材料科学研究中心,材料科学材料科学,日本1-1 Namiki,日本;瑞士苏黎世8093号苏黎世市Quantum Center 4。∗应向谁解决;电子邮件:degenc@ethz.ch。†这些作者也同样贡献。
使用外部田地对齐各向异性纳米颗粒是释放其巨大潜力的新型应用潜力的主要障碍之一。最著名的例子是石墨烯,这是一个2D纳米材料家族,自发现以来就受到了极大的关注。使用石墨烯增强机械,热,电或气势屏障特性,赋予抗菌特性等,在很大程度上取决于控制其在基质材料(即聚合物)内的方向的能力。在这里,我们总结了使用磁场的石墨烯取向的最新进展。审查涵盖了与磁场相互作用的基础物理学,理论连续性力学框架诱导取向,典型的磁场方向设置以及用来增强材料的穿孔量的最新进展的摘要。当前的趋势,当前对齐技术的局限性被突出显示,并确定了该领域的主要挑战。
石墨烯是在二维蜂窝晶格中排列的单层碳原子,由于其出色的热和电性能,引起了人们的重大关注。其高热电导率(约5000 W/m·K)实现有效的散热,使其成为增强电子设备中热管理的理想材料。石墨烯有效地进行热的能力在各种应用中都利用,包括散布器,热界面材料和复合材料,改善了电子产品(例如处理器和LED)的性能和可靠性。除了其热益处外,石墨烯还具有非凡的电导率,电子迁移率达到200,000cm²/v·s。这种特殊的电导率是由于该材料的DELACALIGETINACTRAIGEDI-π电子和最小散射,从而显着增强了电子成分的性能。石墨烯用于导电油墨,晶体管,超级电容器和电池,推动柔性电子,高速晶体管和能量存储技术的进步。尽管有优势,但仍在大规模生产和将石墨烯集成到现有技术中的挑战。需要解决与生产成本,材料质量以及与其他物质兼容性相关的问题。正在进行的研究重点是改善合成技术和探索新的应用,并有望在各个行业中产生变革性的影响。简介石墨烯的优质热和电气性能可在热耗散和电子性能方面进行实质性改进,并可能扩大其应用并增强技术创新。
在这项研究中,合成了氧化物 /壳聚糖复合材料的Fe 3 O 4 /氧化二壳含量,以降解亚甲基蓝色染料。使用XRD,SEM-EDS,VSM和UV-VIS DRS Instruments对合成产品进行表征。使用共沉淀方法合成的Fe 3 O 4 /氧化石墨烯 /壳聚糖复合材料导致具有磁性特性的深褐色粉末。XRD表征在2θ= 35,49°时显示衍射峰,晶体尺寸为23,29 nm。SEM-EDS表征显示骨料形态和C(83,20%),O(11,70%),Na(1,00%),N(0,70%)和Fe(2,50%)。VSM表征显示磁化值为25,39 EMU/g。UV-VIS DRS表征表明Fe 3 O 4 /氧化石墨烯 /壳聚糖的带隙值为1,40 eV。
e,频段G基本上是非分散性的,而与双共振过程有关的峰具有其频率和强度(与频带G相关),取决于激光能量。在二阶频谱中,主线为:2450 cm-1,2705 cm-1(g'),2945 cm-1(d+g),3176 cm-1(2g)和3244 cm-1(2d')。g频段也起源于双共振过程,但归因于二阶扩散,这涉及与两个声子的相互作用(Antunes,2006; Malard,2009)。例外,只有NV和GOG样品显示出更为明显的峰值至约3250 cm-1,指的是2D频段'。
艺术。079970000 7997gn XS-S XS-S-S-S-SS-S 079970002 7997GN M-L M-L M-L 079970004 7997GN XL-XL-XXL XL-XL-XXL
这项研究介绍了一种创新的多学科设计方法,用于高度导电和轻巧的针脚的散热器,利用石墨烯技术的优势。主要目的是优化电动汽车(EV)中基于硅碳化物(SIC)的逆变器的热管理。在模块上,在模块上进行了综合分析,包括扫描电子显微镜(SEM)和能量色散X射线光谱(EDS),在模块上进行了全面的分析。采用3D结合传热(CHT)方法的详细流体动力学模型用于评估与冷却液接触的SIC功率开关的热行为。多学科分析最初是在基于铝制的散热器上实施的,经过实验验证,随后与石墨烯进行了比较。与热链设计中的石墨烯的整合表现出显着的改进,包括在6 L/min min流体流量的情况下,传热系数(HTC)增加了24.4%,热电阻(接收到流体)降低了19.6%。因此,与铝制版本相比,基于石墨烯的散热器中的SIC芯片的温度升高11.5%。通过采用石墨烯而不是传统金属实现的SIC逆变器的冷却解决方案的改进,作为概念证明。这表示在性能和功率密度之间的关键平衡方面向前迈出了一步。
碳纤维(CF)有可能在“结构电池”概念中充当多功能和多功能导电电极。这些电池具有存储电能和携带机械负载的独特能力,而无需额外的电流收集器。但是,在商业化结构电池的道路上仍然存在许多挑战。一个重大的挑战在于基于CF的阴极复合材料的制造过程,包括活性材料对CF表面的粘附不良以及使用危险的有机溶剂,例如N-甲基吡咯酮(NMP)通过传统的叶片涂层。在这项研究中,我们使用电泳沉积(EPD)提出了一种可持续的制造方法,用磷酸锂(LifePo 4)和石墨烯纳米片构建阳性电极复合材料。尤其是乙醇被用作替代NMP的绿色溶剂,以最大程度地减少环境影响。同时,根据系统的比较分析,评估了不同类型的石墨烯添加剂(三种石墨烯纳米片(GNP),四种减少石墨烯(RGO)和一种自制石墨烯)对相对电池性能的影响。在测试的石墨烯添加剂中,基于LFP/RGO2的阳性电极表现出理想的特异性容量为126.2 mAhg -1,即使在2C的苛刻构成下,在500个循环的要求下,也保持了93%以上的保留率。
Incorporation of Graphene Quantum Dots, Iron, and Doxorubicin in/on Ferritin Nanocages for Bimodal Imaging and Drug Delivery Fatemeh Nasrollahi, Barindra Sana, David Paramelle, Samad Ahadian, Ali Khademhosseini, Sierin Lim* Dr. F. Nasrollahi, Dr. Barindra Sana, Prof. Sierin Lim School of Chemical and Biomedical Nanyang Technological University,Nanyang Drive 70 Nanyang Drive,N1.3,新加坡637457电子邮件:slim@ntu.edu.edu.sg F. Nasrolllhi博士,Samad Ahadian博士,Samad Ahadian博士,Ali Khademhosseini教授Ali Khademhosseini教授美国加利福尼亚大学加利福尼亚大学洛杉矶分校生物工程,加利福尼亚州90095,美国纳斯罗拉希博士,纳斯罗拉希博士,伊朗德黑兰大学工程学院,伊朗,德黑兰大学工程学院。框:11155/4563 B. Sana P53博士,科学技术与研究机构(A*Star),8A生物医学格罗夫,新加坡138648 David Paramelle材料研究与工程研究所博士*Star(科学,技术和研究机构)(科学,技术与研究机构) Khademhosseini放射科学系,戴维·盖芬医学院,加利福尼亚大学洛杉矶分校,洛杉矶分校,加利福尼亚州90095,美国化学与生物分子工程系,加利福尼亚州洛杉矶 - 洛杉矶大学,加利福尼亚州洛杉矶大学,加利福尼亚州90095 Nanyang Drive,第N3.1块,#01-03,新加坡637553关键字:多功能铁蛋白纳米含量,pH响应性荧光团,荧光成像,MRI对比剂,多模式成像,石墨烯量子点
1部门电子和计算机技术,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。2部分析化学,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。3苏利亚州大学库利亚(Culiacan),80040,墨西哥的院士。4 cienciasfísico-Matemáticas,锡那罗亚大学,库里亚坦大学,80040,墨西哥。5 Inorangic化学和技术化学系,UNED,马德里28232,西班牙。 6部门 无机化学,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。 *通讯作者,alfonsos@ugr.es可用orcid列表:d.g. 0000-0002-7810-6345; Y.H. 0000-0002-1959-2187; F.J.R. 0000-0002-1582-9626; C.L.M. 0000-0002-6659-7781; I.B.P. 0000-0003-3997-9191; M.P.C. 0000-0001-8377-587X; D.P.M. 0000-0002-3294-8934,N.R。 0000-0002-6032-6921; A.S.C. 0000-0002-1360-6699。 摘要这项工作介绍了用于生物能力采集的激光诱导的石墨烯(LIG)电极的制造程序。 这项研究中提出的结果表明,与先前在文献中报道的其他基于LIG的电极获得的性能有关。 特别是,我们提出了使用电流测量激光器而不是CNC激光器来改善雕刻分辨率和LIG合成过程,从而增强了界面皮肤电极的表面积。 1。5 Inorangic化学和技术化学系,UNED,马德里28232,西班牙。6部门无机化学,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。*通讯作者,alfonsos@ugr.es可用orcid列表:d.g.0000-0002-7810-6345; Y.H.0000-0002-1959-2187; F.J.R.0000-0002-1582-9626; C.L.M.0000-0002-6659-7781; I.B.P.0000-0003-3997-9191; M.P.C.0000-0001-8377-587X; D.P.M.0000-0002-3294-8934,N.R。0000-0002-6032-6921; A.S.C.0000-0002-1360-6699。摘要这项工作介绍了用于生物能力采集的激光诱导的石墨烯(LIG)电极的制造程序。这项研究中提出的结果表明,与先前在文献中报道的其他基于LIG的电极获得的性能有关。特别是,我们提出了使用电流测量激光器而不是CNC激光器来改善雕刻分辨率和LIG合成过程,从而增强了界面皮肤电极的表面积。1。为此,我们研究了所得的LIG模式的电阻,这是寻求优化的激光参数(雕刻功率和扫描速度)的函数。调整激光制造过程后,我们使用商用的基于银基电极作为参考,使用不同表面积进行了制造和表征与不同表面积的电极。因此,使用直径为15毫米,10毫米和6.5毫米的圆形电极用于使用商业设备在不同志愿者上获取ECG。随后使用尖端处理技术处理所采集的信号,以对检测QRS复合物检测的灵敏度,特异性,积极预测和准确性进行统计分析。结果表明,在噪声方面,提出的电极相对于先前报道的基于LIG的电极改善了信号的采集,并且确实比商业电极(即使是较小的表面积)提出了可比较甚至更好的结果,并且不需要使用电解质凝胶,具有附加优势。关键字:激光诱导的石墨烯,心电图,柔性电子,生物信号,电极,激光制造。引言心血管疾病(CVD)是全球死亡的主要原因[1]。根据世界卫生组织(WHO)的报告,2019年与CVD有关的死亡人数为1790万,占全球死亡人数的32%。此外,据估计,到2030年,CVD死亡人数每年将增加到2360万[2]。这些设备有望在因此,已经致力于早期诊断,预防和治疗这些疾病。心电图(ECG)在这种情况下起着至关重要的作用,因为它可以通过非侵入性监测心脏的电活动来早期检测CVD。传统上,获得ECG需要医院就诊并使用复杂的监测系统。但是,可穿戴健康监测系统(WHM)的出现彻底改变了这一领域[3]。