中尺度涡旋对海洋温度和盐度结构产生重大影响,从而改变生态环境和声传播特性。先前对中尺度涡旋效应下声传播的研究主要集中于碎片化的、快照式的分析。而本研究采用整体的方法,通过整合多源数据来阐明海洋温度和盐度结构,最终影响它们的生态环境和声传播。与现有论文相比,本研究采用了更全面、更连续的方法。通过融合多源数据,本研究引入了一种创新的中尺度涡旋跟踪算法和增强的高斯涡旋模型。利用BELLHOP射线理论模型,本研究研究了西北太平洋一个气旋涡旋和一个表现出完整生命周期的典型反气旋涡旋(CE-AE)对的声场特征。结果表明,中尺度涡旋的整个生命周期对声场环境产生显著的影响。随着CE的增强,汇聚区(CZ)距离减小,CZ宽度扩大,直达波(DW)距离缩短。相反,增强的AE会使CZ距离增加,CZ宽度收缩,DW距离延长。本文定量分析了影响涡旋生命周期的关键因素,结果表明涡旋强度和变形参数都显著影响声传播特性,其中涡旋强度的影响更大。本研究对海面测高数据在水下声学研究中的应用具有重要的贡献,并对典型中尺度涡旋环境中涡旋参数对水下声传播的影响提供了初步认识。此外,这项研究为未来研究海洋系统中涡流动力学和声传播之间的复杂关系奠定了基础。
声辐射力 (ARF) 是由声波产生的稳定力,是实现微物体操作的一种便捷方式,例如微样本分离 [1-3] 和富集 [4]、细胞分选 [5,6] 和单细胞操作 [7]。与使用时间周期声场相比,使用脉冲和波列等瞬态激励可以实现更精确的操作 [1-7]。首先,脉冲声操作受瑞利声流的干扰较小 [8,9],因为辐射力比声流建立得快得多 [10,11]。其次,使用声波包可以定位声干涉图样,从而控制声捕获区域的空间范围 [12]。事实上,驻波比行波施加了大得多的辐射力(在小颗粒极限内),激光制导声镊(LGAT)[13] 利用这种干涉原理,创造了一种混合辐射力景观,该景观将高振幅压电声场(强,Z 场)和光图案光生声场(弱,L 场)耦合在一起。混合场保留了 L 场的空间信息和 Z 场的强度。
该项目旨在根据 IEC 1157, 1993《诊断超声设备声输出声明要求》对两个参考设备(NPL 检查源和动态诊断医学超声扫描仪)进行欧洲测量比对。欧洲医学超声设备制造商已将此标准用作证明符合 1995 年 1 月 1 日生效的 EC 医疗器械指令(93/42/EEC)基本要求的手段之一。该项目以放射状组织,协调员 NPL 发挥核心作用。来自七个 EC 国家的十名参与者根据 IEC 1157 对检查源和扫描仪进行了测量,NPL 负责协调、稳定性测试和参考设备的参与者间检查,以及最终分析和报告结果。