图 2:金刚石在双层 (a) 和多层 (b) 薄膜厚度方向上的热导率,从薄膜底部向上 (从薄到厚,虚线),从顶部向下 (从厚到薄,实线)。模型使用散射受限建模 (粗蓝线和虚线,无方向差异) 和受限声子群体模型 (红线和虚线) 展示。自上而下,两种建模方法匹配。然而,自下而上,受限声子模型导致厚膜热导率有限,因为入射声子群体中缺乏长波声子。这导致热导率的显著差异和较大的热整流效应。为了阐明双层和多层配置,插图中提供了带有箭头指示热流方向的卡通图。
囚禁离子为量子计算和模拟提供了一个完美的平台,但提高它们的相干性仍然是一个关键挑战。本文,我们提出并分析了一种通过参数放大离子运动来增强囚禁离子系统中相干相互作用的新策略——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展囚禁离子量子计算的重要组成部分。我们的结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。
囚禁离子为量子计算和模拟提供了一个完美的平台,但提高它们的相干性仍然是一个关键挑战。本文,我们提出并分析了一种通过参数放大离子运动来增强囚禁离子系统中相干相互作用的新策略——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展囚禁离子量子计算的重要组成部分。我们的结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。
囚禁离子为量子计算和模拟提供了一个完美的平台,但提高它们的相干性仍然是一个关键挑战。本文,我们提出并分析了一种通过参数放大离子运动来增强囚禁离子系统中相干相互作用的新策略——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展囚禁离子量子计算的重要组成部分。我们的结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。
囚禁离子为量子计算和模拟提供了一个完美的平台,但提高它们的相干性仍然是一个关键挑战。本文,我们提出并分析了一种通过参数放大离子运动来增强囚禁离子系统中相干相互作用的新策略——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展囚禁离子量子计算的重要组成部分。我们的结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。
捕获离子为量子计算和模拟提供了一个原始平台,但提高它们的相干性仍然是一个关键挑战。在这里,我们提出并分析了一种新策略,通过参数放大离子的运动来增强捕获离子系统中的相干相互作用——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及它如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展捕获离子量子计算的重要组成部分。我们的研究结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。
