摘要本文研究了基于音频的环境感知。该受试者可能会使车辆自动化受益,该自动化近年来引起了显着的兴趣。该技术允许对象在没有人类的情况下几乎或不完全移动。车辆自动化已用于自动驾驶,无人机以及许多家庭和工业机器人。通常,自主迁移率需要监视周围环境。监视使用传感器,例如雷达,相机,激光雷达和声纳,收集可见环境的信息以及障碍物的距离。但是,很少关注监测声学环境。通过使用诸如Unity之类的游戏引擎,可以通过虚拟环境在计算机上方便地研究该问题。可以根据声源的感知位置进行培训的代理商在环境中导航。通过机器学习方法启用了培训,例如深钢筋学习(DRL)。本论文评估了利用统一性在复杂环境中进行导航的智能音频感知者的智能音频感知者的可行性,并专门评估音频输入的培训。目的是通过使用音频来源构建虚拟环境,高级声音空间化和隔离统一的直接声音,以及在环境中具有声音源定位(SSL)功能的智能代理来实现的。空间化允许对环境中的自然声音传播进行建模,以使声音似乎从正确的位置到达。ssl,在工作中使用DRL实现,使代理可以推断出声音到达的方向。结果表明,在平均论文的平均工作量中,可以使用随便可用的插件来构建学习环境和统一训练团结的培训。此外,只要利用先进的声音空间化,就可以成功地对音频输入进行培训。
4.3.有效载荷声学环境 ...................................................................................................................... 40 4.4.有效载荷冲击环境 ...................................................................................................................... 41 4.5.有效载荷结构完整性和环境验证 ............................................................................................. 43 4.6.热和湿度环境 ...................................................................................................................... 43 4.6.1.地面操作 ............................................................................................................................. 43 4.6.2.动力飞行 ............................................................................................................................. 44 4.6.3.氮气吹扫(非标准服务) ............................................................................................. 45 4.7.有效载荷污染控制 ................................................................................................................ 45 4.8.有效载荷电磁环境 ................................................................................................................ 46 5.有效载荷接口 ...................................................................................................................... 47 5.1.有效载荷整流罩 ...................................................................................................................... 47 5.1.1.92” 标准 Minotaur 整流罩 ...................................................................................................... 47 5.1.1.1.92” 整流罩有效载荷动态设计包络线 ............................................................................. 47 5.1.2.可选 110” 整流罩 ............................................................................................................. 48 5.1.2.1.110”整流罩有效载荷动态设计包络线 ...................................................................................... 48 5.1.3.有效载荷检修门 ................................................................................................................ 48 5.2.有效载荷机械接口和分离系统 ............................................................................................. 49 5.2.1.Minotaur 坐标系 ............................................................................................................. 49 5.2.2.NGIS 提供的机械接口控制图 ...................................................................................... 51 5.2.3.标准非分离式机械接口 .............................................................................................. 51 5.2.4.可选机械接口 ...................................................................................................... 51 5.2.4.1.有效载荷锥接口 ...................................................................................................... 53 5.2.4.2.双和多有效载荷适配器配件 ...................................................................................... 53 5.2.4.2.1.双有效载荷适配器配件 ...................................................................................... 53 5.2.4.2.2.多有效载荷适配器配件 (MPAF) ................................................................................ 55 5.2.4.2.3.Minotaur V 和 VI+ 有效载荷适配器配件...................................................................... 56 5.2.5.可选分离系统 ............................................................................................................. 57 5.2.5.1.NGIS 38” 分离系统 ............................................................................................. 59 5.2.5.2.行星系统电动光带 (MLB) ............................................................................. 60 5.2.5.3.RUAG 937 分离系统 ............................................................................................. 60 5.3.有效载荷电气接口 ............................................................................................................. 61 5.3.1.有效载荷脐带接口 ............................................................................................................. 61 5.3.2.有效载荷接口电路 ................................................................................................................ 62 5.3.3.有效载荷电池充电 ................................................................................................................ 62 5.3.4.有效载荷指令和控制 ............................................................................................................. 62 5.3.5.烟火引爆信号 ................................................................................................................ 62 5.3.6.有效载荷遥测 ............................................................................................................................. 63 5.3.7.有效载荷分离监视器环回 ................................................................................................ 63 5.3.8.遥测接口 ................................................................................................................ 63 5.3.9.非标准电气接口 ........................................................................................................ 63 5.3.10.电气发射支持设备 ................................................................................................ 63 5.4.有效载荷设计约束 ............................................................................................................. 64 5.4.1.有效载荷质心约束 ............................................................................................................. 64 5.4.2.最终质量属性精度 ............................................................................................................. 64
基于语音的解决方案的使用是在人类机器人互动(HRI)中进行交流的一种吸引人的替代方法。在这一领域的一个重要挑战是处理遥远的语音,这通常是嘈杂的,并且受回响和随时间变化的声通道的影响。重要的是研究有效的语音解决方案,尤其是在机器人和用户移动的动态环境中,改变说话者和麦克风之间的距离和方向。本文在语音情感识别(SER)的背景下解决了这个问题,这是了解消息的意图和用户的潜在心理状态的重要任务。我们提出了一个带有PR2机器人的新颖设置,该设置同时记录了目标语音和环境噪声。我们的研究不仅在这种动态的机器人用户设置中分析了距离语音的有害效果,以识别语音情绪识别,而且还提供了减轻其效果的措施。我们评估使用两个波束形成方案的使用在空间上使用延迟和-AM(D&S)或最小差异无失真响应(MVDR)过滤语音信号。我们考虑在受控情况下记录的原始培训演讲,并考虑处理训练语言以模拟目标声学环境的情况。我们考虑机器人正在移动的情况(动态情况)而不是移动(静态情况)。为了进行语音情感识别,我们使用梯形网络策略实现的手工制作的功能探索两个最先进的分类器,并通过WAV2VEC 2.0功能表示实现的学习功能。MVDR导致高于基本D&S方法高的信噪比。然而,两种方法都使用使用原始MSP播客训练语言训练的梯子网络提供了非常相似的平均一致性相关系数(CCC)的改进,而HRI子集则相当于116%。对于基于WAV2VEC 2.0的模型,只有D&S才能改善。令人惊讶的是,静态和动态HRI测试子集导致了相似的平均一致性相关系数。最后,模拟训练数据集中的声学环境提供了最高的平均一致性相关系数得分,其HRI子集的分别比原始训练/测试说法与梯子网络和WAV2VEC 2.0相比仅低29%和22%。