在欧盟之外,各个国家和国际机构也认识到在线上瘾实践的影响。例如,联合国强调了在数字环境中解决数字成瘾和保护儿童权利的必要性4。但是,特定法规因国家而异。有些人已经实施了与技术成瘾特征有关的准则或法律,而另一些人仍在探索实际方法。例如,纽约立法机关于2024年6月通过的《儿童法案》第5号法案的停止成瘾性饲料剥削(安全)将禁止社交媒体平台根据某些情况下的建议算法将内容提供给18岁以下的用户。取而代之的是,这些平台将必须为年轻用户提供逆式供稿6。
最近的估计显示,在11月至12月,新德里及其周围城市的空气污染原因约为70%。不仅旁遮普邦和哈里亚纳邦,稻草燃烧在其他州都非常迅速。主要燃烧会导致CO2,CO,SOX,NOX,颗粒物和CH4的发射,从而大大增加空气污染和GHGS/碳足迹。悖论是,一方面,我们缺乏动物饲料,生物燃料和肥料,另一方面,浪费或燃烧了大量的作物残留物。这不仅是自然可再生资源的巨大损失,而且与此同时,它还是温室气体(GHG)排放和环境污染的来源。但是,这些残基可以有效地用作覆盖物,用于生产肥料,乙醇,生物柴油,生物炭等,以及在保护农业中。There are knowledge gaps on the economic technologies for in-situ and ex-situ composting of straw, characterization of rice straw of available varieties for various purposes, cost- effective small-scale technologies for bio-energy production, technologies for value addition of paddy straw in view of present day mechanized agriculture and authentic database on contribution of straw burning in air pollution and GHGs/ carbon footprint.
在此编码中,国家石油,天然气和生物燃料(ANP)的重新计划在提供有关巴西陆地盆地的全面数据方面起着至关重要的作用。根据Ferreira和Oliveira(2021)的说法,对这些数据的开放访问对于可以改变该行业的技术创新至关重要。这项研究使用与NOSQL数据库集成的Python和Typescript中开发的软件加深了此数据的处理,Melo和Santos(2020)(2020)将这种方法识别为对大型数据的有效管理必不可少的方法。
最近,模型合并技术已浮出水面,作为将多个单元模型组合为单个多泰模型组合的解决方案。但是,该领域的先前努力需要进行其他培训或细调过程,或者要求模型具有相同的预先训练的初始化。在这项工作中,我们在W.R.T.先前的工作中确定了一个缺点。单位相似性在重量空间和激活空间中的不一致性。为了解决这种不一致,我们提出了一个创新的模型合并框架,该模型是在双空间约束(MUDSC)下合并的。具体而言,我们主张探索位于双重空间中统一高相似性的区域中的置换矩阵,而不是仅仅使单个空间的目标最大化,这是通过激活和重量相似性矩阵的线性组合实现的。为了提高可用性,我们还对群体结构进行了对企业的适应,包括多头关注和群体标准化。全面的实验比较表明,MUDSC可以很明显地提高具有各种任务组合和体系结构的合并模型的性能。此外,多任务损失景观中合并模型的可视化表明,MUDSC使合并的模型能够驻留在重叠段中,其中每个任务都有统一的较低损失。我们的代码可在https://github.com/zju-vipa/training_free_model_merging上公开获取。
使用穿透式细胞外多通道电极阵列(通常称为神经探针)记录神经元活动是探测神经元活动最广泛的方法之一。尽管有大量可用的细胞外探针设计,但尖峰分类软件要求的电极通道顺序和相对几何形状的映射这一耗时过程总是留给最终用户。因此,这个手动过程容易出现错误映射,进而导致不良的尖峰分类误差和效率低下。在这里,我们介绍了 ProbeInterface,这是一个开源项目,旨在通过消除在尖峰分类之前手动进行探针映射的步骤来统一神经探针元数据描述,以分析细胞外神经记录。ProbeInterface 首先是一个 Python API,使用户能够以任何所需的复杂度级别创建和可视化探针和探针组。其次,ProbeInterface 有助于以可重现的方式生成任何特定数据采集设置的全面接线描述,这通常涉及使用记录探头、探头、适配器和采集系统。第三,我们与探头制造商合作编译了一个可用探头的开放库,可以使用我们的 Python API 在运行时下载。最后,使用 ProbeInterface,我们定义了一种用于探头处理的文件格式,其中包含 FAIR 探头描述的所有必要信息,并且与神经科学中的其他开放标准兼容且互补。
阅读时,我们的眼睛通过一系列注视和高速扫视浏览文本,以提取视觉信息。这一过程使大脑能够获得意义,例如关于书面文本中表达的情绪或情感价。大脑在自然阅读过程中如何提取单个单词的情感在很大程度上是未知的。这是由于自然成像的挑战,这导致研究人员之前采用高度控制、定时的逐字呈现缺乏生态效度的定制阅读材料。在这里,我们旨在评估自然阅读英语句子时词语情绪处理的电神经相关性。我们使用了一个公开的数据集,包括同步脑电图 (EEG)、眼动追踪记录和 400 个句子中的 7129 个单词的词级语义注释(苏黎世认知语言处理语料库;Hollenstein 等人,2018 年)。我们计算了注视相关电位 (FRP),即与注视开始时间锁定的诱发电反应。对从视觉和运动诱发活动中清除的 FRP 进行一般线性混合模型分析,结果显示,在注视开始后 224 – 304 毫秒间隔内,左中和右后电极簇中的积极和消极情绪条件之间存在地形差异。包括单词、短语和句子级情绪预测因子的额外分析显示,单词级情绪的 FRP 差异相同,但短语和句子级情绪没有额外的 FRP 差异。此外,从情绪匹配的 40 次试验平均 FRP 中对单词情绪(积极或消极)进行分类的解码分析显示平均准确率为 0.60(95% 置信区间:[0.58, 0.61])。控制分析排除了这些结果是基于眼球运动或语言特征的差异而不是词语情绪。我们的研究结果扩展了以前的研究,表明词汇语义刺激的情感价会在自然阅读过程中对单词注视产生快速的电神经反应。这些结果为在生态有效条件下识别词汇语义处理的神经过程提供了重要的一步,并可用于改进自然语言处理的计算机算法。
I.评估目的2014年联邦信息安全现代化法案(FISMA)要求联邦机构,包括联邦通信委员会(“ FCC”或“委员会”),以对其信息安全计划和实践进行年度独立评估,并向管理和预算办公室(OMB)报告评估结果。Fisma指出,机构监察长(IG)或IG确定的独立外部评估者必须执行独立评估。与Kearney&Company,P.C。合同的FCC监察长办公室(OIG)办公室 (本报告中定义为“ Kearney”,“ We”和“我们的”),以进行FCC的财政年度(FY)2023评估。 本评估的目的是确定信息安全政策,程序和实践的有效性,该策略和实践的代表性子集和通用服务行政公司(USAC)的信息系统,包括遵守FISMA及其相关信息安全政策,程序,程序,标准和准则。 USAC是FCC指定为联邦通用服务基金管理员的非营利性公司。与Kearney&Company,P.C。合同的FCC监察长办公室(OIG)办公室(本报告中定义为“ Kearney”,“ We”和“我们的”),以进行FCC的财政年度(FY)2023评估。本评估的目的是确定信息安全政策,程序和实践的有效性,该策略和实践的代表性子集和通用服务行政公司(USAC)的信息系统,包括遵守FISMA及其相关信息安全政策,程序,程序,标准和准则。USAC是FCC指定为联邦通用服务基金管理员的非营利性公司。
