近年来,天然纤维增强复合材料由于其质量轻、耐磨、可燃、无毒、成本低和可生物降解等特性而受到广泛关注。在各种天然纤维中,亚麻、竹、剑麻、大麻、苎麻、黄麻和木纤维尤其受到关注。世界各地对利用天然纤维作为增强材料来制备各种类型复合材料进行了大量研究。然而,缺乏良好的界面黏附力、熔点低和耐湿性差使得天然纤维增强复合材料的使用不那么有吸引力。天然纤维的预处理可以清洁纤维表面、对表面进行化学改性、停止吸湿过程并增加表面粗糙度。在各种预处理技术中,接枝共聚和等离子处理是天然纤维表面改性的最佳方法。天然纤维与乙烯基单体的接枝共聚物可在基质和纤维之间提供更好的粘合性。本文回顾了预处理天然纤维在聚合物基质复合材料中的应用。还讨论了天然纤维表面改性对纤维和纤维增强聚合物复合材料性能的影响。POLYM. ENG. SCI.,49:1253–1272,2009 年。ª 2009 年塑料工程师协会
摘要 将干扰素处理过的细胞的细胞质提取物与双链 RNA 和 ATP 一起孵育,可形成一种低分子量的无细胞蛋白质合成抑制剂,其有效浓度为亚纳摩尔。通过将来自此类细胞的 poly(I)poly(C)-Sepharose 结合酶级分与 [:IH 或 [a- 或 y-32P]ATP 一起孵育,可方便地合成该抑制剂。该放射性抑制剂的特征在于其在尿素存在下在 DEAE-Sephadex 上的行为,以及在酶、碱和高碘酸氧化和 ft 消除的顺序降解中获得的产物。其结构似乎是 pppA2'p5'A2'p5'A。除了 2'-5' 键之外,我们没有发现任何其他修改或异常的证据。有时抑制剂制剂似乎包括相应的二聚体 (pppA2'p5'A)、四聚体 [ppp(A2'p)3A]、五聚体 [ppp(A2'p)4A],以及数量逐渐减少的高级寡聚体。三聚体、四聚体和五聚体的活性相似,但二聚体的活性较低,即使有活性。
所有非转介 OPB/EPB 都必须提交给 MPF 以获得批准并交由 ARMS/MILPDS 处理。在 myEval 中,ARPC 仅负责转介 OPB/EPB 的批准和处理。在 myEval 中提交给 ARPC 的所有非转介 OPB/EPB 都将返回给受评人,以便重新路由到受评人的 MPF 以在 ARMS/MILPDS 中处理。当地 MPF 将确定此流程的当地指导方针。
几十年来,露天焚烧和露天爆破(OB/OD)一直被用于处理/销毁高能危险废物。“高能”是指一类能够释放大量化学能的物质,例如军用弹药、烟花和汽车安全气囊推进剂。与封闭式替代技术相比,OB/OD 是一种不受控制的处理技术。1 与能够在释放前捕获和处理残留副产品的技术相比,高能危险废物的 OB/OD 是在露天进行的,处理副产品会直接排放到环境中(图 1)。因此,通过排放颗粒物、不完全燃烧产物或爆炸物块,以及散布弹药和其他废弃物(排泄物)2 而造成的 OB/OD 相关污染和暴露,引发了人们对是否有可用于高能危险废物的替代处理技术的质疑。为了履行 EPA 监控 OB/OD 安全替代品持续开发进展的承诺,3 本报告介绍了已开发的替代处理技术,这些技术在许多情况下已被采用,可考虑替代 OB/OD。
阅读时,我们的眼睛通过一系列注视和高速扫视浏览文本,以提取视觉信息。这一过程使大脑能够获得意义,例如关于书面文本中表达的情绪或情感价。大脑在自然阅读过程中如何提取单个单词的情感在很大程度上是未知的。这是由于自然成像的挑战,这导致研究人员之前采用高度控制、定时的逐字呈现缺乏生态效度的定制阅读材料。在这里,我们旨在评估自然阅读英语句子时词语情绪处理的电神经相关性。我们使用了一个公开的数据集,包括同步脑电图 (EEG)、眼动追踪记录和 400 个句子中的 7129 个单词的词级语义注释(苏黎世认知语言处理语料库;Hollenstein 等人,2018 年)。我们计算了注视相关电位 (FRP),即与注视开始时间锁定的诱发电反应。对从视觉和运动诱发活动中清除的 FRP 进行一般线性混合模型分析,结果显示,在注视开始后 224 – 304 毫秒间隔内,左中和右后电极簇中的积极和消极情绪条件之间存在地形差异。包括单词、短语和句子级情绪预测因子的额外分析显示,单词级情绪的 FRP 差异相同,但短语和句子级情绪没有额外的 FRP 差异。此外,从情绪匹配的 40 次试验平均 FRP 中对单词情绪(积极或消极)进行分类的解码分析显示平均准确率为 0.60(95% 置信区间:[0.58, 0.61])。控制分析排除了这些结果是基于眼球运动或语言特征的差异而不是词语情绪。我们的研究结果扩展了以前的研究,表明词汇语义刺激的情感价会在自然阅读过程中对单词注视产生快速的电神经反应。这些结果为在生态有效条件下识别词汇语义处理的神经过程提供了重要的一步,并可用于改进自然语言处理的计算机算法。
● 模型训练:在训练模型之前,读取 (2) 生成的特征并进行预处理。例如,如果需要,对数据进行归一化,并根据可用数据量按比例拆分为训练、验证和测试数据集。模型训练完成后,将与 model.json 文件一起存储 (3),该文件包含有关训练模型的相关信息,例如每个隐藏层的神经元数量、隐藏层数量、使用的变量(后拟合残差、SNR 等)等。● 批量推理:模型训练完成后,可以通过加载保存的模型 (3) 并对新的 GNSS 数据执行推理过程将其部署到生产中。
本综述探讨了自然语言处理 (NLP) 和人工智能 (AI) 的集成,以增强实时分析的数据可视化。在数据呈指数增长的时代,传统的静态可视化越来越不能满足实时决策的需求。NLP 和 AI 提供了复杂的工具来动态解释和可视化数据,将大量原始信息转化为各个领域的可操作见解。本文综合了 NLP 和 AI 在数据可视化方面的当前研究、方法和应用,重点介绍了关键进展,例如增强的数据可解释性、实时数据处理能力以及通过自然语言查询和交互元素改善的用户交互。它还解决了实施这些技术所面临的挑战和局限性,包括计算复杂性、数据质量问题和道德考虑。本综述确定了重要的趋势和未来方向,例如增强现实和虚拟现实 (AR/VR) 的集成以及生成式 AI 模型的使用,这些趋势和方向有望进一步推动该领域的发展。通过全面概述数据可视化中 NLP 和 AI 的现状,本文旨在为未来的研究和开发工作提供参考和指导,以利用这些技术实现更有效、更高效的数据驱动决策。
乌代浦城产生的家庭污水对环境和城市湖泊的美学外观有潜在的威胁。作为一个主要的国家和国际旅游目的地,该市需要简化污水系统,这成为政府关注的领域。在这方面,乌代浦市政公司在阿姆鲁特和智能城市任务下制定了整个乌代浦市的综合且全面的下水道处理计划。与综合计划一致,已根据AMRUT计划(SAAP 1和2)批准了多个项目,其估计成本约为Rs。160千万。 另一个Rs。 在智能城市任务下已批准了229千万的污水处理项目。 设置分散的下水道处理厂(STP),总计40 MLD容量,估计成本为Rs。 80千万是主要项目之一,STP City Mission计划提出了STP项目的基金。160千万。另一个Rs。在智能城市任务下已批准了229千万的污水处理项目。设置分散的下水道处理厂(STP),总计40 MLD容量,估计成本为Rs。80千万是主要项目之一,STP City Mission计划提出了STP项目的基金。
