摘要:COVID-19大流行的特殊影响刺激了对抗病毒分子的强烈搜索。宿主靶向的抗病毒分子具有呈现广谱抗病毒活性的潜力,并且被认为选择抗性病毒的可能性较小。在这项研究中,我们研究了AM-001施加的抗病毒活性,AM-001是EPAC1的特定药理抑制剂,这是一种由环状AMP(CAMP)直接激活的宿主交换蛋白。cAMP敏感的蛋白质,EPAC1调节了各种生理和病理过程,但其在SARS-COV-2和流动性中的作用尚未研究。在这里,我们提供的证据表明,EPAC1特异性抑制剂AM-001在人肺Calu-3细胞系和非洲绿色猴子Vero细胞系中对SARS-COV-2发挥有效的抗病毒活性。我们观察到浓度依赖性抑制SARS-COV-2传染性病毒颗粒和病毒RNA在AM-001处理的细胞的上清液中释放,这与对细胞活力的显着影响无关。此外,我们将AM-001鉴定为Calu-3细胞中流胞病毒病毒的抑制剂。完全将EPAC1抑制视为对病毒感染的有希望的治疗靶标。
但是,与该方法的算法相比,我们确定了原始实现中的严重错误以及显着的差异(稍后详细介绍)。我们联系了作者讨论这些差异(在电子邮件对话中)。最后,我们担心其功能复杂性,这对于有效的测试至关重要。的确,该框架通过基于高斯混合模型(GMM)的覆盖范围来指导测试过程,这是计算重量的任务。确切地说,MDPFUZZ的想法是指导一个生成和突变输入测试的模糊过程。测试是通过维护(1)揭示正在测试模型中弱点的输入池(即鲁棒性)和(2)被认为发现的测试结果的基于覆盖的指导)。Pang等。提议计算由两个GMM的测试用例产生的状态序列上的输入覆盖率,这需要计算1 + 2 | 푀|概率密度(푀是序列的长度)。额外的覆盖范围指南旨在以新颖的方式行使正在测试的模型,从而更有可能发现故障。Pang等。用四种用例检测,GMMS指导效率,故障分析和政策改进(RETRANE)评估了他们的工作。特别是,他们表明mdpfuzz发现
摘要:节能是信息技术 (IT) 公司面临的一大挑战,这些公司希望在提供大规模云服务的同时减少碳足迹。这些公司通常依靠数据复制技术来满足租户的目标,例如性能,尤其是在全球分布的数据量不断增加的情况下。在本文中,我们提出了一种静态和多目标数据复制策略 (E2ARS),旨在降低提供商的能源消耗和支出。E2ARS 利用云异构性和节能技术。我们首先比较了我们策略的不同策略,从仅考虑能源消耗到仅考虑支出。不出所料,你越想降低能源消耗,复制就越少。然后,我们将 E2ARS 与文献中的策略进行比较。当这些策略仅满足两个目标中的一个时,E2ARS 可同时降低能源消耗和支出。
1.2. REM 的相图。获取 REM 相图的一个简单方法是使用微正则系综。对于给定的样本,即对于 2 N 能量 E ( C ) 的给定实现,让 N ( E ) 表示能量在区间 ( E, E + δE ) 内的配置数(我们选择 δE 小于 N ,但不小于 N 的指数级)。显然,样本中 N ( E ) 的平均值是 ⟨N ( E ) ⟩ = 2 NP ( E ) δE 。然后,由于能量是独立的,对于典型样本 N ( E ) ≃⟨N ( E ) ⟩,在 ⟨N ( E ) ⟩≫ 1 的能量范围内(即当 | E/N | < J √ log 2 时),有且有 N ( E ) = 0,在 ⟨N ( E ) ⟩≪ 1 的范围内。这立即告诉我们基态能量为 E GS /N = − J √ log 2,并且在 | E | /N < J √ log 2 范围内的熵由 S ( E ) = N log 2 − E 2 / ( NJ 2 ) 给出。在此范围之外,没有能级(对于典型样本),因此 S ( E ) = −∞ 。综上所述,
基于生成代理的建模(GABM)是一种新兴的模拟范式,将大型语言模型的推理能力与传统的基于代理的建模相结合,以复制复杂的社交行为,包括在社交媒体上进行互动。虽然先前的工作集中在局部现象(例如意见形成和信息传播)上,但其捕获全球网络动态的潜力仍然没有被逐渐消失。本文通过通过友谊悖论(FP)的角度分析基于GABM的社交媒体模拟来弥补这一差距,这是一种违反直觉现象,平均而言,个人的朋友比朋友的朋友少。我们为社交模拟的GABM框架提出了一个框架,其特征是模仿具有不同个性和兴趣的真实用户的生成代理。使用美国2020年选举和Qanon阴谋的Twitter数据集,我们表明FP自然出现在GABM模拟中。与现实世界的观察一致,模拟揭示了一个分层结构,在该结构中,代理优先与其他表现出更高活动或影响的人相连。此外,我们发现不频繁的连接主要驱动FP,反映了真实网络中的模式。这些发现将GABM验证为建模全球社交媒体现象的强大工具,并通过对用户行为进行细微的分析来强调其推进社会科学的潜力。
非同源最终连接(NHEJ)因素在复制叉保护,重新启动和维修中。在这里,我们确定了一种与RNA相关的机制:在裂变酵母中建立NHEJ因子KU介导的障碍物的DNA杂种。rNase H活性促进新生的链降解和复制重新开始,RNase H2在处理RNA中的重要作用:DNA杂种以克服新生链降解的KU级杂种。rNase H2与MRN-CTP1轴合作,以KU的方式维持对复制应激的抗性。从机械上讲,新生链降解中RNAseH2的需求需要培养基活性,该活动允许建立KU级驻射击器exo1,而损害Okazaki碎片的成熟会加强KU驻式甲壳。最后,复制应力以原始酶依赖性方式诱导KU灶,并有利于KU结合与RNA:DNA杂交。我们提出了RNA的功能:DNA杂交源自冈崎片段的DNA杂交,以控制KU驻式核能指定核酸酶的要求,以使分叉切除。
代谢和DNA复制是生活中两个最基本的生物学功能。代谢的分解代谢分支分解了营养,以产生代谢的能量和前体,该能量由代谢分支用于合成大分子的代谢分支。DNA复制消耗了能量和前体,以忠实地复制基因组,从而一代地传播遗传物质。我们对支撑和调节这两种生物功能的机制有精致的理解。然而,将复制与代谢复制及其生物学功能的分子机制仍然未知。通过细胞周期动态变化对生物的营养刺激作出反应,并在广泛的生长条件下可重复地和明显地将DNA合成时间暂时性化,这是重要的,这在所有领域都具有广泛的含义。总结了建立复制代谢控制概念的开创性研究后,我们回顾了将代谢与从细菌到人类复制的复制联系在一起的数据。然后提出了基于这些联系的基于这些联系的分子见解,以提出复制的代谢控制使用信号系统齿轮代谢体稳态来协调复制时间的时间化。在该控制的突变体中发现的显着复制表型突出了其在复制调节以及潜在的遗传稳定性和肿瘤发生中的重要性。
摘要:强制游泳压力测试(FST)广泛用于筛查具有潜在抗抑郁活性的药理或非药理策略。最近的数据表明,可以使用连续五天重复进行FST(即5D-RFSS),可用于在小鼠中产生强大的抑郁型表型。然而,最近对5D-RFS的面部,构造和预测有效性受到了挑战。这项研究利用了最近发现的优势,表明当动物在黑暗阶段发生压力时,增加了小鼠对焦虑的脆弱性,以提供对该模型相关性的新见解。我们的结果表明,相对于对照非压力动物(假),在5D-RFSS小鼠中固定的时间逐渐增加。三个星期后,我们注意到注射了车辆化合物(VER)的5D-RFSS小鼠在FST中仍然表现出很高的固定性,而这种行为被抗抑郁药阿米替林(AMI)逆转。然而,5D-RFSS/VER和5D-RFSS小鼠/AMI小鼠在开放式场中表现出正常的表现,新颖性抑制了进食和尾悬架测试。尽管缺乏普遍的行为效果,但表征下丘脑 - 垂体 - 肾上腺(HPA)轴反应性的不同参数的损害在5D-RFSS小鼠/vER中证明了5DD-RFSS小鼠/AMI中的反应性。尽管HPA轴异常,但相对于对照组,中央血清素能系统的活性仍未受到5D-RFSS小鼠的影响。有必要进行进一步的实验,以使该模型适合对抑郁症进行建模,从而重新确定其翻译适用性。从我们的结果中,建议学习的固定性不会复制在其他慢性抑郁模型中观察到的广泛抑郁症状,例如无法预测的慢性轻度压力(UCMS)模型,慢性社会失败压力(CSDS)模型或慢性皮质酮(Cort)模型(CORT)暴露,但其在HPA AxiS上的影响。
图19。筛选病毒感染期间的内向功能丧失...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................利用原位HA标签的NSP15病毒...........................................................................................................................................................................................................................................................................................................................................................................................................................Interactions Between Nsp15 and RTC Co-factor Nsp8 were Not Disrupted by the E3K Mutation ........................................................................................................... 64 Figure 22.MHV-A59 NSP15六聚体结构的模型突出了L2和E3的氢键网络。 .................................................................... 65 Figure 23. NTD Mutations Do Not Attenuate Viral Replication in Non-interferon Responsive BMDMs ...................................................................................................... 66 Figure 24. MHV NTD突变病毒在BMDMS感染期间积累了类似WT的NSP15蛋白水平。 MHV NTD Mutants are Attenuated in BMDMs and Induce a Robust Interferon Response ....................................................................................................................... 68 Figure 26. Disruption of the Nsp15 NTD Leads to an Early, Robust Activation of OAS/RNaseL Signaling .................................................................................................. 69 Figure 27. SARS-COV-2 NSP15 NTD的突变减弱了IAT2中的病毒复制。 ............................................................................................................................. 70 Figure 28.MHV-A59 NSP15六聚体结构的模型突出了L2和E3的氢键网络。.................................................................... 65 Figure 23.NTD Mutations Do Not Attenuate Viral Replication in Non-interferon Responsive BMDMs ...................................................................................................... 66 Figure 24.MHV NTD突变病毒在BMDMS感染期间积累了类似WT的NSP15蛋白水平。MHV NTD Mutants are Attenuated in BMDMs and Induce a Robust Interferon Response ....................................................................................................................... 68 Figure 26.Disruption of the Nsp15 NTD Leads to an Early, Robust Activation of OAS/RNaseL Signaling .................................................................................................. 69 Figure 27.SARS-COV-2 NSP15 NTD的突变减弱了IAT2中的病毒复制。 ............................................................................................................................. 70 Figure 28.SARS-COV-2 NSP15 NTD的突变减弱了IAT2中的病毒复制。............................................................................................................................. 70 Figure 28.SARS-COV-2 NSP15 NTD突变体在IAT2中诱导早期,稳健的ISG表达。............................................................................................................................. 71 Figure 29.丧失内向活性的丧失会引起感染BMDMS的转录组轮廓的急剧变化。............................................................................................ 72 Figure 30.NSP15突变病毒在BMDM感染过程中诱导了几种IFN和DSRNA传感器基因的表达。......................................................................... 73 Figure 31.在NSP15突变病毒感染期间,参与坏死途径的基因被上调。................................................................................................... 73 Figure 32.NSP15突变病毒诱导ZBP1依赖性坏死性................................................................................................................................................................................... 74图33。Nsp15 Mutant Viruses Induce ZBP1-independent Apoptosis and Necroptosis ....................................................................................................................................... 76 Figure 34.C57BL/6 Mice Infected with Nsp15 NTD Mutant Viruses Do Not Lose Weight ....................................................................................................................................... 77
为期两周的夏季计算和机器人营地针对中学生。学生将共同努力学习基本的编程技能,并使用工程设计周期来解决问题。