摘要:FUT8 是一种必需的 α -1,6-岩藻糖基转移酶,可使 N-糖链最内层的 GlcNAc 发生岩藻糖基化,这一过程称为核心岩藻糖基化。在体外,FUT8 表现出对双触角复合 N-糖寡糖 (G0) 的底物偏好,但 N-糖链所附着的底层蛋白质/肽的作用仍不清楚。在这里,我们用一系列 N-糖寡糖、N-糖肽和 Asn 连接的寡糖探索了 FUT8 酶。我们发现底层肽在少甘露糖(低甘露糖)和高甘露糖 N-糖链的岩藻糖基化中发挥作用,但对复合型 N-糖链不起作用。使用饱和转移差异 (STD) NMR 光谱,我们证明 FUT8 可识别 G0 N-糖链的所有糖单元和大多数氨基酸残基 (Asn-X-Thr),这些残基可作为寡糖基转移酶 (OST) 的识别序列。在存在 GDP 的情况下观察到最大的 STD 信号,这表明 FUT8 必须先与 GDP-β-L-岩藻糖 (GDP-Fuc) 结合才能最佳地识别 N-糖链。我们利用 CHO 细胞的糖基化能力基因工程来评估 FUT8 在具有一组特征明确的治疗性 N-糖蛋白的细胞中对高甘露糖和复合型 N-糖链的核心岩藻糖基化。这证实了核心岩藻糖基化主要发生在复合型 N-糖链上,尽管显然只发生在选定的糖基位点上。消除细胞中复合型糖基化能力(KO mgat1)表明,当转化为高甘露糖时,具有复合型 N-糖的糖基位点会失去核心岩藻糖基化。然而有趣的是,对于在有效获取四天线 N-糖方面并不常见的促红细胞生成素,在高甘露糖 N-糖上,三个 N-糖基化位点中有两个获得了岩藻糖基化。对几种蛋白质晶体结构的 N-糖基化位点的检查表明,核心岩藻糖基化主要受 N-糖的可及性和性质的影响,而不是受底层肽序列的性质的影响。这些数据进一步阐明了细胞体外和体内不同的 FUT8 受体底物特异性,揭示了促进核心岩藻糖基化的不同机制。关键词:FUT8、核心岩藻糖基化、N-糖基化、STD NMR、酶动力学、高甘露糖N-聚糖、复合N-聚糖、寡甘露糖型N-聚糖■ 引言
澳大利亚的自然灾害发生频率和严重程度可能会增加,未来可能会出现更复杂、连锁或复合型灾害。随着澳大利亚进入另一个厄尔尼诺天气周期,2023 年,我们目睹了北半球创纪录的热浪和灾难性的自然灾害事件。恶劣天气事件变得越来越频繁,恢复时间也越来越长,给关键基础设施系统的交付和恢复能力带来了压力。
目前,学校开设电子信息、计算机、自动化三大本科专业类别。电子信息专业课程涵盖信息光电子、通信、微波、信息认知、微电子与电子电路、信息系统、生物医学工程等专业领域;计算机专业课程涵盖高性能计算、网络技术、软件工程、人机交互与媒体、智能技术与系统、网络空间安全、信息管理、理论计算机科学、量子计算、类脑计算等方向;自动化专业课程以数学、信息论、控制论、系统论等知识为核心,构建宽口径基础课程体系,旨在培养兼具工程、信息技术和管理能力的复合型创新人才。
摘要:国内生产总值(GDP)是衡量国民经济发展的重要指标,对于促进经济增长、辅助有关部门进行经济决策具有重要意义。本文采用ARIMA时间序列模型对1978—2022年中国GDP进行实证分析。结果表明,预测的GDP值与实际值吻合较好,即ARIMA(0,2,0)模型具有较高的预测精度。基于建立的ARIMA(0,2,0)模型对2023—2027年中国GDP进行顺序预测。从预测结果可以看出,中国GDP仍将保持平稳增长。为促进中国经济增长,提出以下建议:(1)吸引高科技人才和复合型人才;(2)优化升级产业结构;(3)坚持创新驱动;(4)加强深化对外经济合作。
基于前期开发的功能性高分子生物材料构建了一系列可注射水凝胶体系,包括基 于 “ thiol-ene ” 点击化学反应构建的超支化聚合物/巯基功能化细胞外基质材料交 联水凝胶体系【Acta Biomaterialia 2018, 75, 63; Biomater.Sci.2021, 9, 4139】、基于动态共价化学交联的自愈合可注射水凝胶体系【ACS Appl.Mater.Interfaces 2020, 12, 38918; Applied Materials Today 2021, 22, 100967】 以及基于离子交联和氢键作用的双网络水凝胶体系【Adv.Funct.Mater.2024, 2313322】。创建的超支化聚合物与巯基功能化透明质酸/硫酸软骨素水凝胶可结 合干细胞作为复合型组织修复材料,在创面愈合以及软骨修复方面展现出了显着 的组织再生效果。开发的基于席夫碱动态化学交联水凝胶具有良好的可注射性、 自愈合性以及组织粘附性,在生物3D 打印以及软组织粘附生物胶水方面展现出了 优越的应用前景。
疫苗的分子种植已被宣布为廉价,安全且可扩展的生产平台。与哺乳动物细胞相比,植物生物合成机制的差异可能使病毒糖蛋白的产生复杂化。重塑分泌途径为支持关键的翻译后修改和量身定制糖基化和糖基化指导的折叠方面提供了机会。在这项研究中,我们应用了一种综合的宿主和Glyco工程方法NXS/T Generation™,以在Nicotiana Benthamiana中生产SARS-COV-2预融合峰值峰值培养剂作为新兴病毒的模型抗原。通过透射电子显微镜查看时,尺寸排除蛋白的蛋白质表现出特征性的预灌注结构,这与等效的哺乳动物细胞生产的抗原是无法区分的。植物生产的蛋白质用未加工的寡素糖N-聚糖装饰,并表现出与哺乳动物细胞培养中产生的等效蛋白相媲美的位点占用率。复合型聚糖几乎完全不存在于植物衍生的材料中,这些材料与在哺乳动物细胞培养的衍生蛋白质上观察到的主要成熟,复杂的聚糖形成鲜明对比。在免疫仓鼠中,植物来源的抗原引起对匹配的武汉和异源Delta sars-cov-2变体的中和抗体,尽管滴度低于比较哺乳动物哺乳动物抗原诱导的滴度。接种植物衍生的抗原接种的动物在挑战后表现出降低的病毒载量,以及对SARS-COV-2疾病的显着保护,这一点可通过降低的肺病理学,较低的病毒载荷和