摘要:生物纳米复合药物载体研究是活性物质递送领域的一个关键领域,引入了改善药物治疗的创新方法。此类药物载体在提高活性物质的生物利用度、影响治疗效率和精确度方面发挥着至关重要的作用。通过使用这些先进的载体,可以将药物靶向递送到目标作用位点并最大限度地降低对身体的毒性。最近的研究集中在基于生物聚合物的生物纳米复合结构上,包括脂质、多糖和蛋白质。本综述论文重点介绍了含脂质的纳米复合载体(包括脂质体、脂质乳剂、脂质纳米颗粒、固体脂质纳米颗粒和纳米结构脂质载体)、含多糖的纳米复合载体(包括海藻酸盐和纤维素)和含蛋白质的纳米复合载体(例如明胶和白蛋白)。许多研究表明,此类载体能够有效装载治疗物质并精确控制药物释放。它们还表现出理想的生物相容性,这对其在药物治疗中的潜在应用是一个有希望的迹象。生物纳米复合药物载体的发展表明了一种改进药物输送过程的新方法,有可能为药理学领域的重大进步做出贡献,提高治疗效果,同时最大限度地减少副作用。
STORT 是 DLR 的一个项目,专注于在相对较长的时间内测试高超音速飞行(马赫数高于 8)的关键技术。该项目的总体目标是支持降低未来太空运输系统的成本,同时保持其高度可靠性。为此,未来发射系统所有阶段的可重复使用性是先决条件。对于第一级,8-10 马赫数似乎是最佳分级速度,这意味着需要开发和验证以这些速度返回第一级飞行的技术。因此,STORT 旨在实现代表可重复使用第一级在 8 马赫时进行这种高能再入飞行的运行条件,以支持优化和验证未来太空运输系统开发技术和模拟工具。因此,本文描述了火箭前体组件的设计、制造和集成,直至发射。此外,还概述了从热保护系统传感器收集的飞行数据。前机身热保护系统需要使用陶瓷基复合材料来保护机身免受飞行过程中的高热负荷。在本例中,热保护系统由 DLR 内部制造的 C/C-SiC 复合结构组成。主要元件是一个锥形机头元件和四个通过碳纤维纤维缠绕制造的薄壁壳体段。通过现场连接工艺,由 CMC 材料制成的整体固定支架永久固定在壳体上。连接热保护系统结构的底层前机身主结构由铝制成。
氢可以在螺旋桨和喷气飞机中代替传统的碳氢化合物燃料。在螺旋桨推进的情况下,燃烧发动机的使用优于燃料电池和电动机。在燃料电池的螺旋桨上从化学能量到机械能的转化效率较大,但是除了较重之外,推进系统也更大。燃料电池对新型城市空气流动解决方案有更好的吸引力。燃气轮机发动机的杂交对螺旋桨和喷气推进是有益的。对氢飞机的建筑进行了强烈的修改,以接受更大的燃油箱,具有更大的质量能量,但比喷气燃料较大,但具有较小的体积特异性能源,该燃料储存的燃油箱在板上液体或冷晶中储存。共形储罐可以减少飞机的总体积与球形/圆柱罐,与使用新型复合结构来改善强度并减少储罐的重量相同。随着常规设计,最大捕获的重量略有减小,但是与碳氢化合物燃料相比,每次PAX和NM的能量消耗量大于8% - 15%。燃料电池螺旋桨推进器也遭受了电池和燃料电池堆的重量。非规定设计,例如混合翼和杂交可能有助于减少能源消耗。可再生式氢气 - 仅有的飞机需要在2035年全面部署之前进一步开发飞机技术,当时提供可再生氢的价格将是便宜且丰富的,并且机场基础设施也会开发出来。鉴于高超音速技术的进展以及与亚音速商业航空的协同作用,也可以引入高超音速可再生能源唯一的飞机。
摘要:航空航天工程中聚合物复合材料的战略用途影响了飞机和航天器的设计和制造。该摘要总结了聚合物复合材料在航空航天应用中的基本原理,关键组成部分和重要性。聚合物复合材料由基质材料(通常是聚合物树脂)形成,该基质材料用高强度纤维等高强度纤维加固。这种组合赋予了复合的优质机械性能,例如高强度与重量比,刚度以及对疲劳和腐蚀的抗性。这种特性使聚合物复合材料非常适合轻巧结构和出色性能至关重要的航空航天结构。聚合物复合材料在航空航天中广泛使用,以减轻体重,提高燃油效率并增强结构组件(例如机翼,其中料和机身)的结构完整性。它们对于推进系统,内部结构和热保护系统也至关重要,该系统强调其适应性和对广泛航空航天应用的多功能性。在航空航天中使用聚合物复合材料已促进了制造过程的改进,包括自动树脂传递成型和纤维放置,使得以极高的效率和精确度生产复杂的复合结构是可能的。此外,由于聚合物复合材料提供的设计灵活性,工程师可以在遵守严格的航空航天法规和安全标准的同时最大程度地提高组件性能。进一步的研究试图提高聚合物复合材料的能力和特征,例如在极端条件下对损伤的抵抗力,耐久性和耐用性。下一代航空航天车的发明可以满足太空勘探和运输需求的不断变化,这是由于这一持续的创新而有希望的。
关于索尔维复合材料 索尔维新成立的全球业务部门复合材料是技术先进的轻量化材料解决方案的全球供应商,帮助航空航天、汽车和其他高要求行业的客户设计、开发和高效制造高质量、高性能和复杂的复合结构。复合材料拥有最广泛的产品组合,包括预浸料、树脂系统、粘合剂和表面薄膜、碳纤维、纺织品、工具和真空袋耗材,这得益于其在先进材料科学、化学和应用工程领域的领导地位。索尔维复合材料整合了前氰特航空航天材料和工业材料业务。 关于索尔维 索尔维是一家科学公司,其技术为日常生活的诸多方面带来益处。索尔维在 64 个国家/地区拥有超过 24,100 名员工,将人才、创意和元素结合在一起,以重塑进步。该集团致力于为所有人创造可持续的共享价值,特别是通过其围绕三大支柱制定的“索尔维一个地球”计划:保护气候、节约资源和促进更美好的生活。集团的创新解决方案有助于打造更安全、更清洁、更可持续的产品,这些产品广泛用于家庭、食品和消费品、飞机、汽车、电池、智能设备、医疗保健应用、水和空气净化系统。索尔维成立于 1863 年,如今在其绝大多数业务领域中位居全球前三名,2019 年净销售额达 102 亿欧元。索尔维是
智能复合材料 (SC) 用于执行器和能量收集器等机电系统。通常,薄壁部件(例如梁、板和壳)被用作结构元件,以实现这些复合材料所需的机械行为。SC 表现出各种高级特性,从压电和压磁等低阶现象到挠电和挠磁等高阶效应。最近在智能复合材料中发现的挠磁现象是在有限条件下进行研究的。对现有文献的回顾表明,当存在挠磁效应 (FM) 时,缺乏对 SC 的三维 (3D) 弹性分析的评估。为了解决这个问题,控制方程将包含项 ∂ / ∂ z ,其中 z 表示厚度坐标。变分技术将指导我们进一步开发这些控制方程。我们将利用各种假设和理论,如3D梁模型、von K'arm'an应变非线性、Hamilton原理以及成熟的正、逆FM模型,推导出厚复合梁的本构方程。进行3D分析意味着应变和应变梯度张量必须以3D形式表示。加入项∂/∂z需要构建不同的模型。值得注意的是,目前的商用有限元代码无法准确、充分地处理微米和纳米级固体,因此使用这些程序来模拟挠磁复合结构是不切实际的。因此,我们将推导出的特征线性三维弯曲方程转换为3D半解析多项式域以获得数值结果。这项研究证明了进行三维力学分析对于探索智能结构中多种物理现象的耦合效应的重要性。
摘要:大型复合结构,例如在风能应用中使用的结构,依赖于热量的大规模聚合在令人印象深刻的大规模上。为了实现这一目标,传统的热固性聚合需要升高温度(> 100°C)和延长的治疗持续时间(> 5 h),以进行完全转换,因此需要使用超大烤箱或加热的模具。反过来,这些要求导致能源密集型聚合,从而产生了高生产成本和流程排放。在这项研究中,我们开发了可以在室温下通过变换的“化学加热”概念在室温下启动的热固性聚合,其中使用次级反应的放热能量来促进一级热代理聚合的加热。通过利用氧化还原引起的甲基丙烯酸甲酯自由基聚合作为放热化学能的来源,我们可以达到峰值反应温度> 140°C,以启动环氧 - 酸性热体的聚合,而无需外部加热。此外,通过采用特洛伊甲基丙烯酸甲酯单体在甲基丙烯酸酯和环氧树脂 - 酸酐结构域之间诱导混合,我们实现了与竞争性热力学特性和可调性的均质混合聚合物材料的合成。在此,我们为我们的创新化学加热方法建立了概念概念,并主张其工业整合,以更广泛地对风叶片和大型复合零件进行更节能和简化的制造。关键词:能源效率,制造,复合合成,热固性,双重治疗,化学加热,可回收划分■简介
摘要:随着在线传感技术和高性能计算的最新进展,结构健康监测 (SHM) 已开始成为对民用基础设施进行实时条件监测的自动化方法。理想的 SHM 策略通过利用测量的响应数据来更新基于物理的有限元模型 (FEM) 来检测和描述损坏。在监测复合结构(例如钢筋混凝土 (RC) 桥梁)时,基于 FEM 的 SHM 的可靠性会受到材料、边界、几何和其他模型不确定性的不利影响。土木工程研究人员已经采用了流行的人工智能 (AI) 技术来克服这些限制,因为 AI 具有利用先进的机器学习技术快速分析实验数据来解决复杂和定义不明确的问题的天生能力。在这方面,本研究采用了一种新颖的贝叶斯估计技术来更新耦合的车辆桥梁 FEM 以用于 SHM。与现有的基于 AI 的技术不同,所提出的方法智能地使用嵌入式 FEM 模型,从而减少了参数空间,同时通过基于物理的原理指导贝叶斯模型。为了验证该方法,给定一组“真实”参数,从车桥 FEM 生成桥梁响应数据,并分析参数估计的偏差和标准差。此外,平均参数估计值用于求解 FEM 模型,并将结果与“真实”参数值的结果进行比较。还进行了敏感性研究,以展示正确制定模型空间以改进贝叶斯估计程序的方法。研究最后进行了讨论,重点介绍了利用实验数据使用人工智能技术更新混凝土结构 FEM 时需要考虑的因素。关键词:人工智能、贝叶斯统计、结构健康监测、钢筋混凝土、公路桥梁、车桥相互作用。
在过去的二十年中,在结构工程师中,不仅是在航空航天行业工作的人,对复合材料的重要性和使用都越来越多。它们的利用率已从采用劳动力密集型手工制造工艺的中间技术系统发展到裁缝的高科技汽车制造方法。滤清器和热压技术。以前的过程用于使负载轴承和半载轴承填充面板(主要是iSo-Tropic本质上)在七十年代初变得很流行,并且仍然被利用。后一种生产技术用于生产高科技复合结构,这些结构本质上是各向异性的;为了利用高强度和刚度,将纤维放置在结构中最有利的位置和方向上。要有效,有效地使用这些复合材料,需要详细的分析和设计。对于许多在常规结构材料方面接受培训和经验的工程师来说,进行复合材料进行分析和设计似乎是一项艰巨的任务。通过引入聚合物和纤维来消除复合材料的奥秘,以表格形式和简单方程式讨论制造技术,以赋予材料设计,结构单元,结合和螺栓固定的关节系统的制造技术。本手册的目的。因此,将工程师引入纤维和聚合物矩阵,这些矩阵是结构工程的聚生物复合材料的组成部分。使用新材料,必须了解他们在负载和自然环境中如何在公认的终生中行事;因此,本手册的结尾包含许多案例研究。此外,本书将以表格形式提供一个简单的指南,用于主要制造技术,简单的设计公式以及结构复合系统和连接的方法;给出了进一步阅读的参考。这些章节没有提供详尽的图片,但希望他们能以清晰的方式介绍复合材料的设计方面,从而导致设计技术的进一步高级研究。
教师主页链接 研究领域 AR Harikrishnan 博士 传热和流体流动、液滴蒸发、液滴撞击动力学、润湿和界面物理、胶体和复杂流体、微纳米级热流体 Abhijeet K. Digalwar 博士 世界级制造、可持续制造、绿色制造、精益制造、机床工程、运营管理、全面质量管理、绩效测量系统 Amit R. Singh 博士 固体和结构力学、流体动力学、非线性弹性、有限元法、计算接触力学、软壳力学、定向粒子系统 Aneesh AM 博士 微型通道中流体流动和传热的计算和实验研究、多相流和流体结构相互作用的计算研究 Arun Kr. 博士Jalan 故障诊断、机械状态监测、声学、摩擦学 Prof. Bijay K. Rout 机械系统的设计优化、动态系统的建模和仿真、实验设计技术的应用和稳健设计的进化算法。 C. Ranganayakulu 教授 热/传热:紧凑型热交换器、沸腾和冷凝、设计和产品开发 Divyansh Patel 博士 使用电化学微加工对生物医学植入物进行微纹理化,先进(非传统)加工工艺 Faizan M. Rashid 博士 复合结构、生物力学、材料力学、疲劳、冲击力学、材料建模和材料特性 Gaurav Watts 博士 计算结构力学 Girish Kant 博士 制造 Jitendra S. Rathore 博士 力学、纳米技术 KS Sangwan 教授 可持续制造、精益制造、综合和绿色可持续供应链管理、单元制造系统、机械加工的资源效率、制造系统设计、网络物理生产系统/工业 4.0、人工智能技术在制造系统设计中的应用 Mani Sankar Dasgupta 教授