•神经保护和神经发生促进脑发育:源自间充质干细胞(MSC)的外泌体包含生长因子和神经营养因子,例如脑衍生的神经营养因子(BDNF)和神经生长因子(NGF)。这些分子对于促进神经发生(新神经元的生长)和保护现有神经元免受损伤至关重要。这可以导致认知功能和大脑发育的改善。
外泌体被认为是细胞之间相互作用的关键促进因子。他们向靶细胞传递生物学剂,在多个生物学和病理事件中扮演重要角色,并具有巨大的潜力,作为疾病的创新替代疗法。细胞之间的外泌体通信似乎在涉及癌症,神经退行性疾病和炎症性疾病的几种疾病的发展中起作用。外泌体是以独特的双质蛋白结构为特征的小小(20-150 nm)实体。他们在细胞上运输和切换多种碳,并作为多种疾病的无创指标。外泌体由于其独特的特性而被认为是癌症检测的最有效指标。本文档将检查外泌体的当前用途,其起源和多样化的隔离技术。此外,外泌体的功能及其在生物医学研究和临床前实验中的使用是简洁的。
缩写:ards =急性呼吸窘迫综合征; CTE =慢性创伤性脑病; ERG = V-ETS红细胞增生病毒E26癌基因同源物; exos =外泌体; LRKK2 =富含亮氨酸的重复激酶2;
再生医学是一个多学科领域,它可以帮助组织和器官的结构和功能。由于它们能够迁移到损伤部位并通过旁分泌因子促进组织再生(分泌组),因此中胞囊干细胞已成为此类研究中使用最广泛的干细胞类型[1-3]。然而,目标组织内的细胞定位不足和低细胞存活率的问题使MSC的吸引力降低。最近,由于旁分泌因素在克服了MSC的局限性方面引起了越来越多的兴趣。细胞外囊泡(EV),包括外泌体,是参与胞内通信和贩运的最重要的旁分泌效应子之一[4]。外泌体是脂质双层囊泡,直径范围为30至200 nm,可以通过表面
摘要:膀胱癌(BC)是一种异质性疾病,吡咯烷-5-羧酸还原酶1(PYCR1)能够促进BC细胞的增殖和侵袭,加速BC进展。本研究将si-PYCR1加载到BC的骨髓间充质干细胞(BMSC)来源的外泌体(Exos)中。首先,评估BC组织/细胞中的PYCR1水平,并评估细胞增殖、侵袭和迁移。测定有氧糖酵解水平(葡萄糖摄取、乳酸生成、ATP生成和相关酶的表达)和EGFR/PI3K/AKT通路磷酸化水平。通过共免疫沉淀实验检查PYCR1-EGFR相互作用。用oe-PYCR1转染的RT4细胞用EGFR抑制剂CL-387785处理。将si‑PYCR1装载于Exos中并进行鉴定,随后评估其对有氧糖酵解和恶性细胞行为的影响。通过给小鼠注射Exo‑si‑PYCR1和Exo‑si‑PYCR1建立异种移植瘤裸鼠模型。PYCR1在BC细胞中上调,在T24细胞中表达最高,在RT4细胞中表达最低。PYCR1敲低后,T24细胞的恶性行为和有氧糖酵解降低,而在RT4细胞中PYCR1过表达则扭转了这些趋势。PYCR1与EGFR相互作用,CL‑387785抑制EGFR/PI3K/AKT通路并减弱PYCR1过表达对RT4细胞的影响,但对PYCR1表达没有影响。 Exo‑si‑PYCR1对有氧糖酵解和T24细胞恶性行为的抑制作用比si‑PYCR1更强。Exo‑si‑PYCR1阻断了异种移植肿瘤的生长,具有良好的生物相容性。简而言之,
摘要:外泌体是内体起源的细胞外囊泡,直径为30至150 nm,介导各种生物分子的细胞间转移,例如蛋白质,脂质,核酸,核酸和代谢物。他们调节受体细胞的功能,并参与多种生理和病理过程,例如免疫反应,细胞 - 细胞通信,致癌作用和病毒感染。干细胞(SC)是多能细胞或多能细胞,可以分化为各种细胞类型。scs还可以分泌外泌体,这些外泌体对各种疾病具有显着的治疗潜力,尤其是在再生医学领域。例如,源自间充质干细胞(MSC)的外泌体含有蛋白质,脂质和miRNA,可以改善内分泌疾病,例如糖尿病和癌症。SCS(SC-EXOS)的外泌体可能具有与SCS相似的优势,但风险和挑战降低。 SC-EXOS具有较低的肿瘤性,免疫原性和感染性。 他们还可以更有效地输送药物并深入组织。 在这篇综述中,我们概述了SC-EXOS及其在各种疾病(例如糖尿病和癌症)中的治疗应用的最新进展。 我们还阐明了SC-EXOS的生物学效应如何取决于它们的分子组成。 我们还解决了使用SC-EXOS的当前挑战和未来方向。外泌体可能具有与SCS相似的优势,但风险和挑战降低。SC-EXOS具有较低的肿瘤性,免疫原性和感染性。他们还可以更有效地输送药物并深入组织。在这篇综述中,我们概述了SC-EXOS及其在各种疾病(例如糖尿病和癌症)中的治疗应用的最新进展。 我们还阐明了SC-EXOS的生物学效应如何取决于它们的分子组成。 我们还解决了使用SC-EXOS的当前挑战和未来方向。在这篇综述中,我们概述了SC-EXOS及其在各种疾病(例如糖尿病和癌症)中的治疗应用的最新进展。我们还阐明了SC-EXOS的生物学效应如何取决于它们的分子组成。我们还解决了使用SC-EXOS的当前挑战和未来方向。
摘要:芽孢杆菌和相关属是药物生产环境中最重要的污染物之一,在物种水平上鉴定这些微生物有助于研究污染的来源以及预防性和纠正性决策。这项研究的目的是评估三种方法,以表征从巴西里约热内卢的药物单位分离出的内孢子的有氧细菌菌株。MALDI-TOF MS,并使用Sanger方法进行了完整的16S rRNA基因测序。结果表明芽孢杆菌属(n = 9; 36.0%),priestia(n = 5; 20.0%)和佩尼比曲霉(N = 4; 16.0%)的流行率。三个(20.0%)菌株显示出<98.7%的DNA测序相似性在ezbiocloud数据库上,表明可能的新物种。此外,将芽孢杆菌杆菌的重新分类为Priestia属,为Priestia pseudoflexus sp。nov。提出了。总而言之,16S rRNA和MALDI TOF/MS不足以识别物种水平的所有菌株,并且需要进行互补分析。
© 作者 2025。开放存取 本文根据知识共享署名 4.0 国际许可证授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可证中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可证中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
抽象简介:Covid-19已在世界各地散布,并严重中断了人类活动。是一种新发现的疾病,不仅疾病的许多方面都是未知的,而且没有有效治愈该疾病的有效药物。此外,设计药物是一个耗时的过程,需要大量投资。因此,使用药物重新利用技术来发现现有药物的隐藏好处,这可能是治疗Covid-19的有用选择。方法:本研究利用了药物重新定位概念,并引入了一些可能有效控制Covid-19的候选药物。建议的方法包括三个主要步骤。首先,从公共数据库中提取了所需的数据,例如靶标的氨基酸序列和药物 - 靶标相互作用。第二,使用拟议的基于模糊逻辑的方法计算目标(蛋白质/酶)和SARS-COV-2的基因组之间的相似性评分。由于经典方法产生的结果可能对现实世界应用没有用,因此模糊技术可以解决该问题。第三,在基于获得的分数对目标进行排名之后,检查了影响靶标的药物的有用性以管理COVID-19。结果:结果表明,专为治愈丙型肝炎的抗病毒药物也可以治疗19.19。根据发现,利巴韦林,Simeprevir,Danoprevir和XTL-6865可能有助于控制该疾病。此外,基于模糊逻辑的评分方法可以产生与实际生物学应用更一致的结果。结论:可以得出结论,基于相似性的药物重新利用技术可能是管理新兴疾病(例如COVID-19)的最合适的选择,并且可以应用于广泛的数据。