为口腔 - 芯片模型创建基本结构涉及设计一个微流体芯片,该微流体芯片复制必需的组件并创建模拟口腔复杂性的微环境。微流体芯片可以由各种材料制成,包括玻璃,硅和聚合物。微流体芯片的标准制造技术包括软光刻,光刻图和注射成型。这些方法可以在芯片上创建复杂的微观结构和通道。微流体芯片应复制口腔的关键成分,包括代表各种口腔组织的细胞培养室,例如上皮细胞,成纤维细胞和唾液腺细胞,这些细胞包含在细胞外基质中。细胞外基质可以结合水凝胶或其他材料,以提供结构支撑和细胞附着和生长的基板。结合灌注系统可模拟血液,使营养素,氧气和药物的递送2,3。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月15日。 https://doi.org/10.1101/2024.11.11.622161 doi:Biorxiv Preprint
Téo Kronovsek、Eric Hermand、Alain Berthoz、Alexander Castilla、Matthieu Gallou-Guyot 等人。与年龄相关的视觉空间工作记忆衰退反映在背外侧前额叶激活和认知能力上。行为脑研究,2021 年,第 398 页,第 112981 页。�10.1016/j.bbr.2020.112981�。�hal-03187511�
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
b“氧扩散,在整个共培养室中产生氧梯度。含有10%氧气的基底外侧气流通过气体入口进入,并用磁性搅拌器均匀地通过不对称的共培养室扩散。排气通过气体插座排放,完成了系统的气流(Fofanova等,2019)。该图是使用生物者创建的。(b)不对称共培养室的物理图片。(c)在将FITC-DEXTRAN添加到包含Tigk单层的Transwells的顶端室后,在24小时内比较了基底外侧室内FITC-脱骨的荧光强度。在常规氧培养条件下未分化(阴性对照)和分化的Tigks(称为\ XE2 \ X80 \ X9CNORMOXIC \ XE2 \ X80 \ X9D)与在不对称培养条件下的分化Tigk(称为AS AS AS) \ xe2 \ x80 \ x9casymmetric \ xe2 \ x80 \ x9d)。对于每种条件,减去空白培养基的背景荧光强度。未分化的TIGK单层在正常氧状态下培养,然后切换为包含Ca 2+的分化培养基,用作负面对照。(N.S.:p> 0.05,***:p <0.001,n = 2技术重复,n = 3个生物重复序列)。(e)在常氧和不对称培养条件下培养的TIGK单层中细胞活力的比较。热处理细胞是阴性对照(N.S.:p> 0.05,**:p <0.01,n = 3,n = 3)。(d)Transwell插入物中的Tigk单层的形态在正常氧化条件下维持在细胞培养培养基中,或在不对称的共培养室中培养24小时。已知胶原蛋白由于胶原纤维的存在而影响明亮的田间成像,与未涂层的表面相比,该胶原纤维可能会掩盖所观察到的细胞或结构的细节(Hashimoto等,2020)。
2019年,国际糖尿病联合会估计,全球4.65亿(9.3%)的人患有糖尿病,到2045年,该人数可能会增加到7亿(10.9%)。 2同样,2019年,成人糖尿病前期的患病率估计为3.74亿(7.5%),预计到2045年将增加到5.48亿(8.6%)。。 2型糖尿病(T2DM)患者的平均预期寿命降低了约10年,而T2DM患者中有80%死于心血管并发症。 3孟加拉国与许多其他国家一样,由于改善的社会经济地位和计划外而迅速的城市化而从传染性疾病过渡到非传染性疾病。 4孟加拉国也正在经历从传统饮食习惯到快餐饮食和久坐的生活方式的营养过渡,这有助于糖尿病等非传染性疾病的兴起。 52019年,国际糖尿病联合会估计,全球4.65亿(9.3%)的人患有糖尿病,到2045年,该人数可能会增加到7亿(10.9%)。2同样,2019年,成人糖尿病前期的患病率估计为3.74亿(7.5%),预计到2045年将增加到5.48亿(8.6%)。2型糖尿病(T2DM)患者的平均预期寿命降低了约10年,而T2DM患者中有80%死于心血管并发症。3孟加拉国与许多其他国家一样,由于改善的社会经济地位和计划外而迅速的城市化而从传染性疾病过渡到非传染性疾病。4孟加拉国也正在经历从传统饮食习惯到快餐饮食和久坐的生活方式的营养过渡,这有助于糖尿病等非传染性疾病的兴起。5
情绪障碍,例如抑郁症(DD)和双相情感障碍(BD)疾病会影响全球数百万人(Dilsaver,2011; Greenberg et al。,2021; Kieling等,2024)。了解这些疾病的神经生物学相关性可能有助于改善临床结果。在情绪障碍个体中受影响的结构之一是侧心脑室(Abé等,2023; Gray等,2020; Hibar等,2016,2018; Ho等,2022; Okada等,2023; Schmaal等,2016)。外侧心室是大型C形结构,可将其投射到额叶,颞叶和枕叶,并负责脑脊液(CSF)生产(Scelsi等,2020)。心室的大小与脉络丛的大小正相关(Murck等,2024),该大小可产生CSF,并通过控制CSF和CSF之间的分子交换来维持CNS稳态的维持(Thompson等人(Thompson等)(Thompson等,20222年)。
Slitrk家族由六个突触粘附分子组成,其中一些分子与神经精神疾病有关。在这项研究中,我们旨在通过分析slitrk4敲除(KO)小鼠来研究slitrk4的生理作用。SLITRK4蛋白在大脑中被广泛检测到,并且在嗅球和杏仁核中很丰富。在系统的行为分析中,男性slitrk4 ko小鼠在对经典恐惧条件的提示测试中表现出增强的恐惧记忆,而社会行为在相互的社交互动测试中表现出来。在使用杏仁核切片的电生理分析中,slitrk4 ko小鼠在丘脑 - 杏仁核的长期增强率增强,并减少了反馈抑制。在SLITRK4 KO大脑的分子标记分析中,成人阶段的侧杏仁核前部减少了钙网蛋白(CR)阳性中间神经元的数量。在体外实验中,在神经元之间的实验中,Slitrk4降低的胚胎干细胞在诱导GABA能中间神经元中有缺陷,其对Sonic HedgeHog信号激活的响应改变了GABA> GABA> GABA> GABA> GABAERNERNERORON子集。这些结果表明SLITRK4功能与恐惧记忆回路中抑制性神经元的发展有关,并将有助于更好地理解骨质应激障碍,在这种障碍中,已经报道了SLITRK4的表达改变。
慢性疼痛和饮酒障碍(AUD)是高度合并的,慢性疼痛的患者更有可能符合AUD的标准。证据表明,这两种情况都会改变类似的大脑途径,但这种关系仍然很少理解。先前的工作表明,前岛皮层(AIC)参与慢性疼痛和AUD。但是,疼痛和饮酒的组合引起的电路变化仍在研究中。这项工作的目的是阐明对饮酒和慢性疼痛对AIC神经元的融合作用,这些神经元将投影发送到背外侧纹状体(DLS)。在这里,我们使用了黑暗中的饮酒(DID)范式来模拟经历了不幸的神经损伤(SNI)的小鼠中类似暴饮暴食的饮酒,然后在急性脑切片中进行全细胞贴剂电池电学记录,以测量AIC→DLS神经元的固有性和突触特性。在雄性但不是雌性小鼠中,我们发现与假小鼠相比,没有先前酒精暴露的SNI小鼠消耗的酒精含量较低。电生理分析表明,来自SNI的AIC→DLS神经元 - 酒精雄性小鼠的神经元兴奋性增加,微型兴奋性突触后电流的频率增加。但是,与SNI后,与SNI相比,SNI之前暴露于酒精的小鼠消耗了类似的酒精。一起,我们的数据表明,慢性疼痛和饮酒的相互作用对小鼠的固有激励能力和突触传播都有直接影响,这对于了解慢性疼痛如何改变与酒精相关的动机行为可能至关重要。
大约10%的ALS病例与ALS的家族历史有关(家族性ALS [fals])。剩下的90%的没有已知的ALS家族史的病例称为零星ALS(SALS)。3,4使用广泛的测序策略的最新研究表明,在20%以上的SALS病例中可以发现ALS的潜在遗传原因,5例导致较新的命名法,例如遗传ALS和Nongenetic ALS,以区分2个亚组。随着过去十年中ALS基因的发现增加,遗传与非遗传ALS的比例正在不断变化。欧洲人口中ALS的5个最常见的单基因原因包括C9orf72中的六核苷酸重复膨胀([[[染色体9开放式阅读框架72] 4%至7%的ALS病例); SOD1的功能序列变化([超级氧化物歧化酶1] 2%的ALS病例); TARDBP(TARBP结合蛋白43),FUS(融合在SAR昏迷中)和TBK1(储罐结合激酶1)的序列变化,每个ALS病例中占1%或更少。1,4