动物神经系统在处理感觉输入方面非常有效。神经形态计算范式的目的是针对神经网络计算的硬件实施,以支持用于构建脑启发的计算系统的新颖解决方案。在这里,我们从果实幼虫的神经系统中的感觉处理中汲取灵感。具有<200个神经元和<1.000的强烈有限的计算资源,幼虫嗅觉途径采用基本计算来转变外围的广泛调节的益人的输入,成为中央大脑中良好的稀疏代码。我们展示了这种方法如何使我们能够在尖峰神经网络中实现刺激模式的稀疏编码和提高的可分离性,并在混合体信号实时神经形态硬件上通过软件仿真和硬件仿真验证。我们验证反馈抑制是在神经元种群中支持空间结构域稀疏性的主要基础,而尖峰频率适应和反馈抑制的组合决定了时间域中的稀疏性。我们的例外表明,在神经形态硬件上有效地实现了如此大小的生物学上现实的神经网络,可以实现并行处理并有效地编码在全时间分辨率下进行感官。
干细胞通常依靠来自利基市场的信号,在许多组织中,这些信号采用了精确的形态。仍然难以捉摸的是生态位的形成方式以及形态如何影响功能。为了解决这个问题,我们利用了果蝇性促性gonadal壁基,提供遗传性障碍和现场成像。我们先前已经显示了将小众细胞迁移到性腺中适当位置的机制,以及对小众功能的结果。在这里,我们表明,一旦定位,生态位细胞可牢固地极化丝状肌动蛋白(F-肌动蛋白)和非肌肉肌球蛋白II(MyOII),向相邻的生殖细胞。沿利基外围的肌动蛋白张力产生高度可重现的平滑轮廓。没有收缩性,壁ni是错误的,并且在调节生殖线干细胞行为的能力方面表现出缺陷。我们还表明生殖细胞有助于在小众细胞中偏振肌无力,并且外在输入是生态形态发生和功能所必需的。我们的工作揭示了一种反馈机制,其中干细胞塑造了指导其行为的利基市场。关键词果蝇,干细胞,睾丸,利基,反馈,肌动蛋白收缩力,形态发生
中枢神经系统(CNS)是一种免疫学专业的组织,需要特殊的保护和平衡的免疫反应(Rua和McGavern,2018; Alves de Lima等,2020)。长期以来,大脑被认为是一个“免疫特异性”部位,它是指为耐受抗原引入而开发的进化适应性而无需诱导强大的免疫反应(Alves de Lima等,2020)。然而,大量的研究表明,在不同的病理状况中,中枢神经系统中有强大的免疫反应,包括感染,自身免疫性神经蛋白浮肿,神经退行性疾病和CNS损伤(Croese等人,Croese等,2021)。中枢神经系统由两个主要结构,脑和脊髓组成,这些结构被保护性物理屏障(例如脑膜,血脑屏障(BBB),血液中性障碍物和血液脑脊液(CSF)屏障)所包围(Alves de Lima等人(Alves de Lima等)。脑膜作为CNS障碍,但也代表了与外围的界面,并有助于CNS稳态和免疫反应(Rua和McGavern,2018)。脑膜由三层 - 硬脑膜,蛛网膜母乳和PIA MATER组成。硬脑膜是颅骨附近的最外层,该层高度支配,血管化并包含淋巴管(Aspelund等,2015; Louveau等,2015)。脑膜
混合或完全基于云的企业体系结构和服务可以显着改变许可实体的风险概况。需要有效管理和减轻对这种技术安排的依赖而产生的风险。必须有有效而清晰的ICT治理框架。,它要求持有许可证持有人的管理机构以及任何寻求授权的实体,以确保对依赖外包服务提供商的依赖程度有清晰的认识和理解。业务连续性和应急计划还需要涵盖外包安排的所有方面。MFSA认识到授权公司对推动关键或重要职能的技术安排的依赖,这可能涉及多个远程第三方服务提供商,这些服务提供商直接签约和/或分包。它也认识到传统企业外围的模糊 - 不仅在身体上而且在逻辑上也是如此。这不仅是由基于云的工作负载和地理分散的数据存储或服务带来的,而且还归因于公司需要适应访问计算和数据资产的多方面操作要求。后者包括无线和现场员工,包括外包提供商和业务合作伙伴的员工,手机中的服务和资源的访问以及多个上游和下游集成点。这在网络安全暴露方面提出了具有挑战性的弹性攻击表面,因此,在战略和运营计划水平上需要最大的关注,并结合
与等效性手性系统相比,日光流混合物结晶的易度性被通常利用以产生小分子的晶体。然而,生物大分子(例如DNA和蛋白质)是天然手性的,因此,可用的手性空间组有限范围会阻碍这种分子的结晶。在过去的15年中启发性的工作表明,蛋白质的消极混合物是蛋白质化学合成的令人印象深刻的进步,确实可以提高蛋白质结晶实验的成功率。最近,将外消旋结晶方法扩展到包括核酸,作为确定对映射DNA晶体结构的可能有助于。在这里,报告的发现表明,收益可能会超出这一点。描述了DNA序列D(CCCGGG)的两个外表面晶体结构,发现它们折叠成A形DNA。这种形式与固态中手性等效物所采用的Z形式DNA构象有所不同,这表明种族群的使用也可能有利于新构象的出现。重要的是,外星人混合物在固态中形成与手性等效物不同的固态相互作用(包括形成了外围的伪螺旋形成),这表明利用外消毒DNA混合物可以为精确的自组装纳米材料和纳米结构设计提供新的可能性。
活化性角化病(AK)是最常见的皮肤病学疾病之一。这是一种良性的e骨内增殖,是一种癌前状态,称为鳞状细胞癌(SCC原位)。它影响了大约25%的成年人口,尤其是老年人,在60-69岁和80岁以上的年龄段中,患病率为4.6%和14.57%[1,2]。在临床上,AK的特征是存在过度性和红斑。AK的主要触发因素是慢性紫外线暴露,因此,它通常位于慢性阳光暴露的区域,例如手的脸,头皮,颈部和手背[3,4]。文献报道,AK向入侵SCC(ISCC)的进展风险在每年0.025%和16%之间变化[5,6],而在先前的皮肤SCC(CSCC)(CSCC)中,在5年内约为40.7%[5-7]。病变的持续时间,出血,疼痛和厚度和直径的增大表明将AK转化为ISCC [8]。AK病变还伴随着“野外罐头”,这是肿瘤发生的区域,被定义为临床可见AK的外围的亚临床变化的区域,这些区域显示出与AK病变相似的遗传变化的遗传变化[9]。由于AK是一种癌前的疾病,因此很重要的是尽早实施治疗以防止癌症进展。
DR。 Michael J. Hayduk Michael J. Hayduk博士是纽约州罗马空军研究实验室信息局副主任。 董事会的使命是领导空军战斗信息技术的开发和整合,用于指挥,控制,通信,计算机,情报和网络。 Hayduk博士在监督超过16亿美元的年度预算方面发挥了关键作用,领导了1200多名科学家,工程师,行政和支持人员的活动。 他协调AFRL的量子信息科学研究组合,涵盖了七个技术局。 Hayduk博士精心策划了Innovare Advancement Center的站立式,开设了一个Innovation Technology Hub,位于信息局安全外围的外面。 Hayduk博士继续领导创新战略合作伙伴关系的发展。 在他目前的职位之前,海杜克博士从2011年至2019年担任空军研究实验室的计算机和通信部负责人。。 该部门的任务是领导我们的空中,空间和网络空间部队的可负担计算,网络和通信技术的发现,开发和集成。 Hayduk博士定义,计划,预算,倡导,管理;并指导了研究计划的执行,并领导了该部门内部人员管理的各个方面。 Hayduk博士于1991年通过Palace Knight教育计划加入了空军,并被分配到罗马实验室。DR。 Michael J. Hayduk Michael J. Hayduk博士是纽约州罗马空军研究实验室信息局副主任。董事会的使命是领导空军战斗信息技术的开发和整合,用于指挥,控制,通信,计算机,情报和网络。Hayduk博士在监督超过16亿美元的年度预算方面发挥了关键作用,领导了1200多名科学家,工程师,行政和支持人员的活动。 他协调AFRL的量子信息科学研究组合,涵盖了七个技术局。 Hayduk博士精心策划了Innovare Advancement Center的站立式,开设了一个Innovation Technology Hub,位于信息局安全外围的外面。 Hayduk博士继续领导创新战略合作伙伴关系的发展。 在他目前的职位之前,海杜克博士从2011年至2019年担任空军研究实验室的计算机和通信部负责人。。 该部门的任务是领导我们的空中,空间和网络空间部队的可负担计算,网络和通信技术的发现,开发和集成。 Hayduk博士定义,计划,预算,倡导,管理;并指导了研究计划的执行,并领导了该部门内部人员管理的各个方面。 Hayduk博士于1991年通过Palace Knight教育计划加入了空军,并被分配到罗马实验室。Hayduk博士在监督超过16亿美元的年度预算方面发挥了关键作用,领导了1200多名科学家,工程师,行政和支持人员的活动。他协调AFRL的量子信息科学研究组合,涵盖了七个技术局。Hayduk博士精心策划了Innovare Advancement Center的站立式,开设了一个Innovation Technology Hub,位于信息局安全外围的外面。 Hayduk博士继续领导创新战略合作伙伴关系的发展。 在他目前的职位之前,海杜克博士从2011年至2019年担任空军研究实验室的计算机和通信部负责人。。 该部门的任务是领导我们的空中,空间和网络空间部队的可负担计算,网络和通信技术的发现,开发和集成。 Hayduk博士定义,计划,预算,倡导,管理;并指导了研究计划的执行,并领导了该部门内部人员管理的各个方面。 Hayduk博士于1991年通过Palace Knight教育计划加入了空军,并被分配到罗马实验室。Hayduk博士精心策划了Innovare Advancement Center的站立式,开设了一个Innovation Technology Hub,位于信息局安全外围的外面。Hayduk博士继续领导创新战略合作伙伴关系的发展。 在他目前的职位之前,海杜克博士从2011年至2019年担任空军研究实验室的计算机和通信部负责人。。Hayduk博士继续领导创新战略合作伙伴关系的发展。在他目前的职位之前,海杜克博士从2011年至2019年担任空军研究实验室的计算机和通信部负责人。该部门的任务是领导我们的空中,空间和网络空间部队的可负担计算,网络和通信技术的发现,开发和集成。Hayduk博士定义,计划,预算,倡导,管理;并指导了研究计划的执行,并领导了该部门内部人员管理的各个方面。 Hayduk博士于1991年通过Palace Knight教育计划加入了空军,并被分配到罗马实验室。Hayduk博士定义,计划,预算,倡导,管理;并指导了研究计划的执行,并领导了该部门内部人员管理的各个方面。Hayduk博士于1991年通过Palace Knight教育计划加入了空军,并被分配到罗马实验室。Hayduk博士于1991年通过Palace Knight教育计划加入了空军,并被分配到罗马实验室。完成研究生学习后,他曾是一名研究工程师,在那里他开发了用于光学通信系统的超快固态脉冲激光器。作为团队负责人,海杜克博士领导了微波光子组件和子系统的开发,用于射频传感器。在2005年,他被评为AFRL传感器局电力组件分支的代理负责人,Hayduk博士开发了用于高级射频和电光AF传感器系统的组件和子系统。在2007年,他过渡到AFRL信息局新兴计算技术分支的负责人,该局在纳米计算,量子计算,计算智能和高级计算体系结构的光学计算中进行了基本和探索性研究与开发。Hayduk博士发表了50多份期刊和会议论文,并拥有一项美国专利。 教育1991年科学学士学位,电气工程学士,克拉克森大学,波茨坦,纽约州,纽约州,1993年,1993年,弗吉尼亚大学电气工程硕士,弗吉尼亚大学,夏洛茨维尔大学,1997年,1997年,1997年,纽约州康奈尔大学电气工程医生,纽约州康奈尔大学,2008年,麦克斯韦尔大学,麦克斯韦尔大学。Hayduk博士发表了50多份期刊和会议论文,并拥有一项美国专利。教育1991年科学学士学位,电气工程学士,克拉克森大学,波茨坦,纽约州,纽约州,1993年,1993年,弗吉尼亚大学电气工程硕士,弗吉尼亚大学,夏洛茨维尔大学,1997年,1997年,1997年,纽约州康奈尔大学电气工程医生,纽约州康奈尔大学,2008年,麦克斯韦尔大学,麦克斯韦尔大学。
Yevgeny Raitses Princton等离子体物理实验室电子束产生的等离子体及其应用 - 从材料进程到太空推进,对微型等离子体(E-Beam)产生的低温等离子体(LTP)的兴趣越来越兴趣,用于在原子尺度上用于原子质尺度的微电量表和量子系统。对于这些应用,血浆([E] 〜10 9 -10 12 cm -3,t e〜0.1-10 eV通常是通过将能量(10 2 - 10 4 eV)E -Beam注入低压(10 -1 -1 -10 2 MTORR)沿施加磁场(10-10 3 Gauss)的低压(10 -1 -1 -10 2 mtorr)。B场有助于局限于通过反应器传播的e-束。跨B场的施加电场可以控制离子通量到等离子体外围的底物(WAFER)。具有交叉电和磁场(EXB)场的电子束等离子源可以选择性地产生离子和反应性物种,而低能颗粒的均匀通量则可以使其对材料的低破坏处理有吸引力。由于电子束在亚米压力下有效地将分子气体电离,因此最近在非常低的地球轨道(70-200 km)下为空气呼吸质量推进器进行了生动。在本演讲中,我将回顾电子束发电LTP系统及其应用的概念。i将概述关键等离子体过程,包括等离子体的产生,跨场扩散和梁血压相互作用。我将讨论控制电子束产生的EXB等离子体中电子和离子的特征不稳定性,通量和能量分布功能的挑战。
摘要:石墨烯纳米纤维(GNR)由于具有高度可定制的物理化学特性和纳米电子学的潜在效用而引起了浓厚的兴趣。除了控制宽度和边缘结构之外,在GNR中包含手性的还带来了另一个维度来微调其光电特性,但是由于缺乏可行的合成策略,相关研究仍然难以捉摸。在这里,我们演示了具有可调手性载体(N,M)的新型Cave-Edged手性GNR(CCGNR)。值得注意的是,(n,2)-CCGNR的带隙和有效质量与n的增加值呈明显正相关,如理论所示。在这个GNR家族中,成功合成了两个代表成员,即(4,2)-CCGNR和(6,2)-CCGNR。两个CCGNR均表现出由沿其外围的掺入[4]螺旋序引起的尤其弯曲的几何形状,也证明了两种相应模型化合物的单晶结构(1和2)也证明了这一点。通过IR,Raman,Raman,Solit-State NMR,UV-VIS和THZ光谱镜以及理论计算的组合,全面研究了(4,2) - 和(6,2) - CCNR的化学身份和光电特性。符合理论期望,获得的(6,2)-CCGNR具有1.37 eV的低光带隙,以及〜8 cm 2 v -1 s -1的电荷载流子迁移率,而(4,2)-CCGNR表现出1.26 EV的较窄频率为1.26 EV,其移动性为〜14 cm 2 v -1 s -1 s -1 s -1 s -1。这项工作为通过操纵手性载体而精确地设计了GNR的带盖和载体移动性的新途径。
摘要:石墨烯纳米纤维(GNR)由于具有高度可定制的物理化学特性和纳米电子学的潜在效用而引起了浓厚的兴趣。除了控制宽度和边缘结构之外,在GNR中包含手性的还带来了另一个维度来微调其光电特性,但是由于缺乏可行的合成策略,相关研究仍然难以捉摸。在这里,我们演示了具有可调手性载体(N,M)的新型Cave-Edged手性GNR(CCGNR)。值得注意的是,(n,2)-CCGNR的带隙和有效质量与n的增加值呈明显正相关,如理论所示。在这个GNR家族中,成功合成了两个代表成员,即(4,2)-CCGNR和(6,2)-CCGNR。两个CCGNR均表现出由沿其外围的掺入[4]螺旋序引起的尤其弯曲的几何形状,也证明了两种相应模型化合物的单晶结构(1和2)也证明了这一点。通过IR,Raman,Raman,Solit-State NMR,UV-VIS和THZ光谱镜以及理论计算的组合,全面研究了(4,2) - 和(6,2) - CCNR的化学身份和光电特性。符合理论期望,获得的(6,2)-CCGNR具有1.37 eV的低光带隙,以及〜8 cm 2 v -1 s -1的电荷载流子迁移率,而(4,2)-CCGNR表现出1.26 EV的较窄频率为1.26 EV,其移动性为〜14 cm 2 v -1 s -1 s -1 s -1 s -1。这项工作为通过操纵手性载体而精确地设计了GNR的带盖和载体移动性的新途径。