摘要:化疗在肿瘤治疗中被广泛应用。然而,多药耐药性(MDR)的发展削弱了抗癌药物对肿瘤细胞的有效性。这种耐药性常常导致肿瘤复发、转移和患者死亡。幸运的是,基于纳米颗粒的药物输送系统通过共同输送多种药物和 MDR 逆转剂以及巧妙、灵活、智能地修改药物靶标提供了一种有前途的策略。此类系统已证明能够绕过因耐药性而导致的 ABC 转运蛋白生物外排机制。因此,如何输送药物并发挥潜在的抗肿瘤作用已被成功探索、应用和开发。此外,为了克服多药耐药性,基于纳米颗粒的系统因其良好的治疗效果、低副作用和高肿瘤转移抑制率而得到了开发。鉴于此,我们系统地讨论了纳米治疗中 MDR 的分子机制和治疗策略。最后,我们总结了克服 MDR 的有趣想法和未来趋势。
抗菌药物是治疗细菌感染必不可少的药物。然而,几十年来,抗生素在畜牧业、农业和临床环境中的使用给细菌物种带来了巨大的选择压力 (5)。抗菌药物只是细菌在地球上繁衍生息所必须克服的障碍之一;人类及其产品只代表了微生物生命史的一小部分。此外,新发现让我们相信,细菌不仅仅是它们自身适应成功的观察者。细菌的抗生素耐药性可以通过多种方式发展,包括由抗生素靶标突变引起的变化、细胞通透性和外排的变化以及耐药基因的水平转移 (6)。它们有利于动物的护理和从动物源中为人类生产有益健康的食品 (7)。本综述的主要目标是展示脂质体作为抗菌剂载体的优势,以及它们消除感染和战胜抗生素耐药性的能力 (5)。本综述讨论了旨在解决抗生素耐药性和延长抗生素使用寿命的新治疗选择,以及在多重耐药性日益增加的背景下的当前抗生素治疗。
耐药性是抗击癌症的主要障碍之一,根据美国疾病控制中心的数据(https://wisqars.cdc.gov/data/lcd/home),2001 年至 2020 年期间,癌症是美国全因、全年龄段人类死亡的第二大致病因素。在过去的 20 年中,深入的研究通过阐明肿瘤间和肿瘤内异质性(Dagogo-Jack & Shaw 2018)、肿瘤微环境 (TME)(Binnewies 等人 2018)、上皮-间质转化 (EMT) 过程(Yang 等人 2020)、多种药物外排的全谱(Robey 等人 2018)、代谢重编程(Tan 等人 2022)、表观遗传重编程(Cheng 等人 2019)、衰老(Wang 等人 2022)和免疫逃避(Thelen 等人 2021)的关键分子细节,极大地更新了癌症作为一种疾病的身份。在此期间,检测方面的关键里程碑(Fitzgerald 等人 2022)
摘要。背景/目的:对紫杉醇 (PTX) 的化学耐药性显著降低了非小细胞肺癌 (NSCLC) 患者的治疗效果,尤其是在晚期患者中,降低了无进展生存率和总生存率。导致耐药性的关键机制之一是 PTX 通过外排泵从靶细胞中排出。伊维菌素是一种抗寄生虫的杀菌剂;然而,最近有研究表明它可以抑制人类癌细胞的增殖。因此,我们旨在评估伊维菌素与 PTX 联合使用的治疗潜力,并研究伊维菌素克服 PTX 耐药性的分子机制。材料和方法:我们评估了伊维菌素在用或不用 PTX 处理的 A549 细胞中的抗肿瘤作用。我们还使用该细胞系建立了 PTX 耐药细胞并探索了潜在机制。此外,我们评估了伊维菌素是否通过恢复药物敏感性来减弱 PTX 耐药性。结果:A549细胞与PTX联合治疗
乳腺癌具有多种生物多样性,是世界上最常见的死亡原因,尽管新治疗方法取得了进展,但总体上仍面临治疗失败和复发的问题。最近的临床和临床前统计数据支持癌症干细胞 (CSC) 假说及其与正常干细胞的相似性。对相关论文的评估得出结论,在进一步表征 CSC 生物学方面具有重要意义,例如表面生物标志物、微环境调节分子、细胞信号通路、细胞间转换和药物外排泵,以克服多药耐药性和有效治疗。新出现的数据表明,生物学概念是治疗失败的基础。对癌症和 CSC 主题中的细胞信号通路的深入理解可以让我们定义和控制癌症的治疗问题。最近,基于药物输送系统改进和组合疗法的新意义的纳米药物已被用于有效治疗乳腺癌。本综述的目的是将 CSC 作为癌症治疗的潜在目标,以克服当前癌症治疗策略的局限性和问题。
全球控制和消除恶性疟原虫 (Pf) 疟疾的努力因一线抗疟药物出现耐药性而受阻。东南亚对哌喹 (PPQ) 的耐药性主要由药物外排转运蛋白 PfCRT 的突变介导。在非洲,PPQ 已被确定为与青蒿素联合疗法一起进行化学预防的有前途的配套药物,因为它对无性血液阶段寄生虫具有效力,血浆半衰期延长(2-3 周),并且安全性良好。然而,非洲地区出现青蒿素耐药寄生虫增加了 PPQ 耐药性的选择压力,因此预测该地区是否会出现耐药性非常重要。在这里,我们使用基因编辑将非洲最常见的抗氯喹 pfcrt 等位基因引入 Dd2(亚洲)寄生虫:GB4(无 N326S/I356T 的 Dd2)、Cam783(无 N326S 的 Dd2)和 FCB(无 I356T 的 Dd2)。然后,我们将东南亚最常见的 PPQ 抗性 PfCRT 突变(T93S 和 I218F)编辑到 Dd2 GB4、Cam783 或 FCB 中
药物赋形剂(如P-糖蛋白抑制剂)也可以增加药物对肠膜的溶解度和亲和力,增强细胞细胞途径和摄取内吞take虫,并激活淋巴转运途径,从而增加口服药物的生物利用度。本综述旨在通过评估P-糖蛋白流出蛋白在渗透性和药代动力学研究中评估P-糖蛋白外排的元数据来审查和评估药物赋形剂作为P-糖蛋白通透性抑制剂的性能。综述结果是药物赋形剂,已证明是来自表面活性剂和聚合物基团的P-糖蛋白抑制剂的有效,分别是TPGS和Poloxamer 188。与常规配方相比,所有将药物赋形剂掺入P-gp抑制剂的纳米系统都在提高口服药物的渗透性和生物利用度方面均具有潜力。这些系统的有效性已通过体外(CACO-2细胞),Ex Vivo(Ever the ted肠囊),原位(SPIP)和体内(AUC)方法评估。
抽象的碳酸酐酶12被认为是癌细胞中的致癌和酸性微环境因子。为了验证组胺信号作为抗癌信号的作用,我们确定了CA12及其相关的碳酸氢盐转运蛋白的作用。在这项研究中,组胺刺激介导了CA12在肺癌细胞中的错误定位。组胺受体激活介导的Ca12内吞作用和pH值通过CAMKII抑制恢复。CA12相关的AE2表达增强了,而NBCN1表达及其活性通过组胺刺激降低。组胺受体激活介导的酸化是通过内部化的CA12和NBCN1诱导的,同时通过增强的AE2表达来增加碳酸氢盐外排。抑制bafilomycin对蛋白质运输的抑制作用恢复了Ca12和AE2局部性,并减少了细胞酸中毒。因此,我们验证了组胺刺激诱导的酸性场景 - 揭示了CA12及其相关的碳酸氢盐转运蛋白在肺癌细胞中的运输及其相关的碳酸氢盐转运蛋白及其失调的pH调节可能与组胺信号信号介导的介导的抗癌抗癌过程有关。
血脑屏障(BBB)是血管与脑实质之间的半渗透屏障,包括内皮细胞和外排转运蛋白之间的紧密连接,可主动从中枢神经系统中清除物质。离子和小于400 da)(DA)的小脂溶性分子通常能够通过BBB,但是较大的分子无法获得[1]。虽然对于维持中枢神经系统组成和免疫特你的环境至关重要,但BBB还阻碍了潜在的转化疗法到达大脑中的预期靶标[2,3]。正在研究BBB通透性的许多策略。从广义上讲,这些策略可以归类为跨细胞和细胞细胞[4]。在经跨细胞a的抗体中,可以使分子更具亲脂性来促进跨BBB的通道,或者可以增强载体介导的转运,以绕过BBB完全绕过BBB [5]。跨细胞方法可以受到与这些类型的释放兼容的药物限制。细胞细胞的方法涉及紧密连接的破坏,这可以通过化学或物理手段进行。BBB透化的化学细胞细胞机制通常依赖于血管活性剂,高质量化合物(例如甘露醇)或对Claudin蛋白家族的抗体(与紧密
Kiaran Kirk是堪培拉澳大利亚国立大学(ANU)的生物化学教授和科学院长,曾在牛津大学和悉尼大学工作过。 他的主要研究兴趣在于疟疾寄生虫的生物学,他的研究为寄生虫生物化学的基本见解,成为抗疟药耐药性的分子基础,并成为各种新一代新一代抗马拉群体的作用机制,其中一些是在先进的临床试验中。 柯克教授的工作尤其集中在分子和离子交叉细胞膜的途径和蛋白质上,并且在代谢废物的出口中以及细胞离子稳态的调节中在养分摄取中起关键作用。 他和他的同事在血阶段疟原虫的表面膜上表征了一套膜转运蛋白。 这些蛋白质之一PFATP4用作钠(Na+)外排泵,在寄生虫细胞质中保持低Na+浓度。 PFATP4已成为令人惊讶的大量化学抗疟药化合物的靶标。 柯克教授的研究产生了重大的翻译影响,生化测定法是他和他的同事已经开发出用于评估进入抗疟药药物开发管道的药物的作用机理,以确保在具有相同分子靶标的化合物中没有过度投资。Kiaran Kirk是堪培拉澳大利亚国立大学(ANU)的生物化学教授和科学院长,曾在牛津大学和悉尼大学工作过。他的主要研究兴趣在于疟疾寄生虫的生物学,他的研究为寄生虫生物化学的基本见解,成为抗疟药耐药性的分子基础,并成为各种新一代新一代抗马拉群体的作用机制,其中一些是在先进的临床试验中。柯克教授的工作尤其集中在分子和离子交叉细胞膜的途径和蛋白质上,并且在代谢废物的出口中以及细胞离子稳态的调节中在养分摄取中起关键作用。他和他的同事在血阶段疟原虫的表面膜上表征了一套膜转运蛋白。这些蛋白质之一PFATP4用作钠(Na+)外排泵,在寄生虫细胞质中保持低Na+浓度。PFATP4已成为令人惊讶的大量化学抗疟药化合物的靶标。柯克教授的研究产生了重大的翻译影响,生化测定法是他和他的同事已经开发出用于评估进入抗疟药药物开发管道的药物的作用机理,以确保在具有相同分子靶标的化合物中没有过度投资。