乳腺癌仍然是全球女性癌症相关死亡的主要原因。降低乳腺癌死亡率的一个重大挑战是多药耐药性。这种耐药性通过各种机制产生,例如药物外排增强、DNA修复改善、逃避衰老、表观遗传修饰、肿瘤异质性、肿瘤微环境 (TME) 的改变以及上皮-间质转化 (EMT)。这些因素共同使得克服耐药性变得尤为困难。因此,在本研究中,我们分析了来自癌症基因组图谱 (TCGA) 的数据,并确定了一个新基因半乳糖凝集素-8,它在乳腺癌进展中起着关键的调节作用。基因集富集分析 (GSEA) 进一步揭示了半乳糖凝集素-8 参与调节乳腺癌的耐药性。为了验证这一发现,我们进行了一项质谱分析,比较了耐药三阴性乳腺癌 (TNBC) 细胞系与对照组。我们的结果表明,耐药细胞中半乳糖凝集素 8 的表达显著增加,且存在统计学上的显著差异。此外,我们发现降低耐药细胞系中半乳糖凝集素 8 的表达不仅可以恢复抗癌药物的有效性,还可以抑制肿瘤细胞的增殖和迁移。因此,我们的研究结果强调了半乳糖凝集素 8 的重要预后和治疗潜力,强调了未来研究探索乳腺癌靶向治疗策略的重要性。
颅内溶质运输的机制是人类脑健康的基础,其变化通常与疾病和功能障碍有关,并有独特的个性化诊断和治疗机会。然而,我们对这些机制及其相互作用的理解仍然不完整,部分原因是跨尺度,物种和不同模态之间的洞察力的复杂性。在这里,我们结合了混合尺寸建模,多模式磁共振图像和高性能计算,以构建和探索人类颅内分子富集的高保真性内部模型。该模型预测了在蛛网膜下腔,心室系统和脑实质的图像衍生几何表示中溶质的颞空间扩散,包括表面周围空间(PVSS)的网络。我们的发现强调了脑脊液(CSF)产生和颅内搏动性对鞘内示踪剂注射后分子富集的显着影响。我们证明,低频血管舒张症会在表面PVS网络中引起中度CSF流量,从而大大增强了示踪剂的富集,并且富集受损是PVS扩大的直接自然结果。因此,这个公开可用的技术平台为整合了关于神经胶体扩散,血管动力学,颅内搏动性,CSF的产生和外排的单独观察的机会,并探索了人脑中的药物输送和清除率。
摘要:我们之前曾报道过,甲硫替平是一种小分子,被称为非选择性血清素 5-HT 受体拮抗剂,可抑制 Hedgehog 受体 Ptch1 的阿霉素流出活性,并增强阿霉素对肾上腺皮质癌细胞的细胞毒性、促凋亡、抗增殖和抗克隆形成作用。本文表明,甲硫替平还可抑制阿霉素流出,并增加内源性过表达 Ptch1 的黑色素瘤细胞中的阿霉素细胞毒性。患有 BRAF V600E 突变的黑色素瘤患者可使用 BRAF V600E 抑制剂维莫非尼治疗,通常与 MEK 抑制剂曲美替尼联合使用。几乎所有患者最终都会对治疗产生耐药性,导致病情进展。本文报告称,甲硫替平通过增强维莫非尼和曲美替尼对这些细胞的细胞毒性,导致黑色素瘤细胞死亡,从而克服了 BRAF V600E 黑色素瘤细胞的耐药性。我们观察到,在维莫非尼中添加甲硫替平比单独使用维莫非尼更有效地阻止了耐药黑色素瘤细胞的迁移。我们的研究结果进一步证明,Ptch1 药物外排抑制可提高抗癌治疗的有效性,并克服表达 Ptch1 的黑色素瘤细胞的耐药性。
由生物膜引起的持续感染是一种紧急医学,应通过新的替代策略来解决。经典治疗和抗生素耐药性的低效率是由于生物膜形成而引起的持续感染的主要问题,这增加了发病率和死亡率的风险。生物膜细胞中的基因表达模式与浮游细胞中的基因表达模式不同。针对生物膜的有前途的方法之一是基于纳米颗粒(NP)的治疗,其中具有多种机制的NP阻碍了细菌细胞在浮游物或生物膜形式中的抗性。例如,通过不同的策略干扰与生物膜相关的细菌的基因表达,诸如银(Ag),氧化锌(Ag),氧化锌(ZnO),二氧化钛(TIO 2),氧化铜(CU)和氧化铁(Fe 3 O 4)。NP可以渗透到生物膜结构中,并影响外排泵的表达,法定感应和与粘附相关的基因,从而抑制生物膜的形成或发育。因此,通过NPS来理解和靶向细菌生物膜的基因和分子基础,指向可以控制生物膜感染的治疗靶标。同时,应通过受控的暴露和安全评估来避免NP对环境及其细胞毒性的可能影响。本研究的重点是生物膜相关的基因,这些基因是抑制具有高效NP的细菌生物膜的潜在靶标,尤其是金属或金属氧化物NP。
摘要:Survivin 是一种药物靶点,其抑制剂 YM155 是一种主要用于治疗高危神经母细胞瘤的候选药物。神经母细胞瘤细胞系 UKF-NB-3 的一个 YM155 适应亚系的研究结果表明,ABCB1(介导 YM155 外排)水平升高、SLC35F2(介导 YM155 摄取)水平降低、Survivin 水平降低和 TP53 突变表明 YM155 耐药。在此,对另外 10 个 YM155 适应 UKF-NB-3 亚系的研究仅证实了 ABCB1 和 SLC35F2 的作用。然而,细胞 ABCB1 和 SLC35F2 水平并不表明 YM155 幼稚细胞对 YM155 敏感,如来自癌症治疗反应门户 (CTRP) 和癌症药物敏感性基因组学 (GDSC) 数据库的药物反应数据所示。此外,耐药亚系具有显著的异质性。只有七个亚系产生了靶向耐药性,这表现为对 RNAi 介导的 survivin 耗竭的耐药性。这些亚系对其他抗癌药物的反应也各不相同。总之,内在异质性有限的癌细胞群在治疗后会形成各种耐药表型。因此,个性化治疗需要监测癌细胞在治疗后的演变。此外,生物标志物可以在获得性耐药环境中指示耐药性的形成,即使在内在耐药环境中无法预测。
取决于所涉及的酵母菌物种,与其他唑烷抗真菌剂的抗性主要机制涉及(i)通过(i)改变型氨基酸14α-甲基甲基酶的氨基酸组成,从而损害该药物在细胞中的积累,(II)增加药物外生物的含量(iiiiiiiiii)。有报道说,除白色念珠菌以外的念珠菌物种上都有近次感染,这些念珠菌通常固有地降低了易感性(C. glabrata)或对氟康唑的抗性(例如,C. Krusei,C。Auris)。这种感染可能需要替代性抗真菌治疗。在白色念珠菌中,麦角固醇合成途径的阻塞主要是由于ERG3编码的固醇C5,6-二酸酶的阻滞而引起的,在耐药物种中编码的candida glabrata,candida glabrata,candida glabrata,candida blabrata,主要是由cr anderiped and Drection and Drectruationant and Drection 2 and Drectraught and Drection 2 and Drectraption 2)细胞中药物的外排。因此,对氟康唑的耐药性通常会赋予对其他偶氮抗真菌剂的抗性。 在Neoformans中,研究表明,该物种中存在相同的主要耐药机制,并且这些机制可能会受到事先暴露于Azole抗真菌药剂的影响。对氟康唑的耐药性通常会赋予对其他偶氮抗真菌剂的抗性。在Neoformans中,研究表明,该物种中存在相同的主要耐药机制,并且这些机制可能会受到事先暴露于Azole抗真菌药剂的影响。
摘要 胶质母细胞瘤(GBM)是最常见的恶性脑肿瘤,虽然目前的治疗策略包括手术、化疗和放疗等取得了临床效果并延长了患者的生存期,但对现有疗法的逐渐产生的耐药性导致了高复发率和治疗失败。耐药性产生的机制涉及多种因素,包括药物外排、DNA损伤修复、胶质瘤干细胞和缺氧肿瘤环境,这些因素通常相互关联、相互促进。随着许多潜在的治疗靶点被发现,调控多种耐药相关分子通路的联合治疗被认为是一种有吸引力的策略。近年来,纳米药物通过优化积累、渗透、内化和控制释放彻底改变了癌症治疗方法。通过修饰纳米药物上的配体并与血脑屏障(BBB)上的受体或转运蛋白相互作用,血脑屏障的穿透效率也得到显著提高。此外,联合治疗中不同的药物通常具有不同的药代动力学和生物分布,可通过药物输送系统进一步优化,以最大程度地提高联合治疗的治疗效果。本文讨论了目前基于纳米药物的胶质母细胞瘤联合治疗的成果。本综述旨在为未来胶质母细胞瘤治疗研究提供对耐药机制和基于纳米药物的联合疗法的更广泛理解。关键词 联合治疗;耐药性;胶质母细胞瘤;纳米技术;替莫唑胺
黑色素瘤是最具侵袭性的皮肤癌,人们已研究了多种治疗方法来治疗这种疾病,但耐药性仍然是传统疗法失败的重要因素。本文描述了海藻酸盐、壳聚糖、普鲁兰多糖及其组合纳米乳剂的开发、优化和特性,以及它们作为药物输送平台在黑色素瘤治疗中的潜在应用。设计了一种新型纳米乳剂输送系统,并通过确定体外药物释放、细胞活力 (MTT)、细胞凋亡 (ELISA) 和共聚焦显微镜对其进行了评估。对纳米乳剂对 BRAF 突变黑色素瘤 (A375) 和角质形成细胞 (HaCaT) 细胞的影响进行了比较分析,并选择“普鲁兰多糖-壳聚糖”纳米乳剂作为黑色素瘤药物输送的方法。用载有阿霉素的最佳纳米乳剂治疗 72 小时后,黑色素瘤细胞凋亡诱导率增加至 90%。同样,在同样的治疗中,黑色素瘤细胞的存活率降低了 70%。更重要的是,用阿霉素处理的 A375 细胞存活率为 100%,而用载有阿霉素的纳米乳剂处理的细胞存活率仅为 30%。所取得的结果表明药物载体的聚合物组合的重要性以及药物释放模式对治疗效率的影响。这为消除药物外排相关的化学耐药性提供了潜力。
收到2022年12月4日; 2023年8月3日接受;出版于2023年8月17日作者隶属关系:1分子环境微生物学实验室,韩国首尔韩国环境科学与生态工程系,韩国共和国。*信件:Woojun Park,WPARK@韩国。AC。KR关键词:抗生素耐药性;生物膜; DNA甲基化;外排泵;表观遗传学;甲基转移酶。缩写:AR,抗生素耐药性; Azi,阿奇霉素; CCCP,羰基氰化物3-氯苯基氢气; Col,Colistin; Ery,红霉素; Etbr,溴化乙锭; Gen,庆大霉素; IPD,脉间持续时间; Kan,Kanamycin; 6mA,n -6-甲基丹宁; 4MC,n -4-甲基环肽; 5MC,5-甲基胞嘧啶; MEM,MeropeNem; MIC,最小抑制浓度; MTase,甲基转移酶;小睡,核苷相关蛋白;也不,诺福路吗? OMV,外膜外囊泡; PMB,多粘蛋白B; rif,利福平; RM,限制修改; SEM,扫描电子显微镜; SMRT-SEQ,单分子实时测序; TF,转录因子; TMP,甲氧苄啶。†这些作者对此工作数据声明也同样贡献:本文或通过补充数据文件中提供了所有支持数据,代码和协议。本文的在线版本可以使用三个补充数据和六个补充表。001093©2023作者
奥玛环素 (Nuzyra) 是一种口服和静脉 (IV) 氨基甲基环素类抗生素,属于四环素类,于 2018 年 10 月获得美国食品药品监督管理局 (FDA) 批准,用于治疗由易感菌引起的社区获得性肺炎 (CAP) 和急性细菌性皮肤和皮肤结构感染 (ABSSSI) 的成人患者。奥玛环素已显示出对表达四环素特异性耐药机制的菌体的活性,包括外排和核糖体保护。奥玛环素还于 2021 年被 FDA 授予孤儿药资格,用于治疗非结核分枝杆菌 (NTM) 引起的感染。美国传染病协会 (IDSA) 针对 CAP (2019) 和 ABSSSI (2014) 的现行指南未将奥玛环素列为推荐药物。CAP 指南提到,奥玛环素需要在门诊环境中进一步验证。对于住院患者,由于只有一份已发表的报告,且安全性信息不太明确,委员会决定不将奥玛环素列为目前推荐治疗方案的替代方案。多中心队列研究表明,当患者对其他更成熟的抗感染药物产生耐药性时,奥玛环素是某些 NTM 感染的有效替代治疗方案。