研究了两种气体(CO 2)和甲烷(CH 4)的两种气体中的中红外区域的检测,研究了不同的集成光子传感器。这三个研究的结构是基于Chalcogenide膜(CHG)或多孔也(PGE)和基于CHG的Slot波导的山脊波导。优化了波导尺寸,以在导向光和气体之间获得最高功率因数,同时保持在中红外波长范围内的单个模式传播。在CHG山脊波导的情况下,可实现的功率因数为1%,PGE-Ridge为45%,在CHG-Slot的情况下为58%。在λ=4.3μm处的二氧化碳的检测极低(LOD),甲烷在λ=7.7μm下的二氧化碳为0.1 ppm,由于中液范围内的较大的气体吸收系数,可获得CHG SLOT波引导的λ=7.7μm。对于多孔驻驻波导,还计算出低LOD值:CO 2在λ=4.3μm时为0.12 ppm,CH 4在λ=7.7μm处的Ch 4 ppm。这些结果表明,所提出的结构可以在环境和健康感测芯片上实现通用光谱检测所需的竞争性能。
太空系统司令部启动 EWS 立方体卫星技术演示 摘要:太空系统司令部的电光/红外气象系统立方体卫星技术演示成功搭载 SpaceX 的 Transporter-10 小型卫星共乘任务发射。这项为期一年的 EWS 立方体卫星技术演示将验证新兴的太空 EO/IR 辐射成像技术,该技术使用较小的传感器,从低地球轨道提供及时的气象图像数据。加利福尼亚州埃尔塞贡多——3 月 4 日,太空系统司令部 (SSC) 从加利福尼亚州范登堡太空部队基地搭载 SpaceX 的 Transporter-10 小型卫星共乘任务发射了其电光/红外 (EO/IR) 气象系统 (EWS) 立方体卫星技术演示。为期一年的 EWS 立方体卫星技术演示将验证新兴的太空 EO/IR 辐射成像技术,该技术使用较小的传感器,从低地球轨道 (LEO) 提供及时的天气图像数据。“EWS 立方体卫星技术演示工作代表了 SSC 继续致力于与非传统合作伙伴合作,以拓宽竞争性工业基础,同时培育潜在的突破性解决方案,”EWS 物资负责人兼项目经理 Joe Maguadog 中校说。“如果成功,这将提供一种创新的选择来提供我们渴望评估的太空环境监测数据,这对于使我们部署在世界各地的部队能够计划和执行战区联合行动至关重要。这次演示将为我们向更经济、可扩展且更具弹性的 EO/IR 气象星座的过渡提供信息。” 2020 年 6 月,EWS 计划通过竞争选择了非传统政府承包商 Orion Space Solutions (OSS) 来交付用于此次演示的立方体卫星。这次任务迅速重建了之前的 EWS 立方体卫星技术演示原型能力,该原型在 2023 年 1 月经历了在轨分离异常。美国太空部队 (USSF) 与 OSS 密切合作,能够在不到 30 天的时间内授予新合同,并在短短 10 个月内开发了另一颗卫星。
Simrad GD10P 气体检测仪是一种点式检测仪,用于监测潜在危险和/或有毒环境中的气体浓度。GD10P 基于红外吸收,采用模拟和微处理器技术的最新发展成果。固态设计提高了连续测量环境空气中气体浓度的可靠性、长期稳定性和准确性。与催化传感器相比,GD10P 具有以下优势:无需氧气即可进行正确测量,这使得 GD10P 即使在惰性气体环境中也适用。由于没有发生化学反应,因此检测仪不可能中毒,即硅蒸气和 H 2 S 对检测仪或测量没有影响。气体流速对准确性没有影响。没有可能导致错误测量的饱和效应。因此,该检测器能够测量高达 100% 体积的气体浓度。该检测器具有连续自检功能,并向控制系统报告脏污光学元件和故障情况。使用 GD10P 可以大幅降低系统总成本:高可靠性可降低测试频率,无需校准成本。无需采用旨在减少误报的投票系统,从而将检测器数量减少了高达 66%。
Simrad GD10PE 气体检测仪是一种扩展点检测仪,用于监测潜在危险和/或有毒环境中的低气体浓度。GD10PE 基于红外吸收,采用模拟和微处理器技术的最新发展成果。固态设计提高了连续测量环境空气中气体浓度的可靠性、长期稳定性和准确性。与催化传感器相比,GD10PE 具有以下优势:无需氧气即可进行正确测量,这使得 GD10PE 即使在惰性气体环境中也适用。由于没有发生化学反应,因此检测器不可能中毒,即硅蒸气和 H 2 S 对检测器或测量没有影响。气体流速对准确性没有影响。没有可能导致错误测量的饱和效应。探测器具有连续自检功能,并向控制系统报告脏污的光学元件和故障情况。使用 GD10PE 可以大幅降低系统总成本:高可靠性可降低测试频率,无需校准成本。不需要旨在减少误报的投票系统,从而将探测器数量减少高达 66%。