问题:大的地球大黄蜂(Bombus terrestris)保持了社会核心肠道微生物,与蜜蜂相似,蜜蜂对宿主的健康和抵抗起着重要作用。在实验室条件下使用商业蜂箱进行的实验仅限于垂直传播的微生物和忽视环境因素的影响或微生物的外部收购。各种环境和景观水平因素可能会影响授粉昆虫的肠道菌群,这对农业生态系统的授粉媒介健康和舒适性产生了影响。仍然,尚不完全清楚是否可以对大黄蜂微生物群具有重要影响。在这里,我们在半场实验中进行了测试,如果大黄蜂微生物群在暴露于户外笼子内不同型号多样性时随着时间的流逝而变化。我们使用商业蜂箱分别与巢环境或暴露的外部环境区分垂直和水平传播的细菌。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 1 月 24 日发布。;https://doi.org/10.1101/2025.01.22.634016 doi:bioRxiv preprint
摘要 - 编码人类优先知识的度量语义图的创建代表了环境的高级突出。然而,构建此类地图构成了与多模式传感器数据融合,实时映射性能的融合以及结构和语义信息一致性的保留相关的挑战。在本文中,我们引入了一个在线度量 - 语义映射系统,该系统利用LIDAR-Visual-Visual-Visual惯性传感生成了大型室外环境的全局度量标准网格地图。利用GPU加速度,我们的映射过程达到了出色的速度,无论场景尺度如何此外,我们将所得地图无缝地集成到现实世界中的导航系统中,从而实现了基于公制的语义地形评估和在校园环境中的自主点 - 要点导航。通过对包含24个序列的公共可用数据集进行的广泛实验,我们证明了映射和导航方法的有效性。
摘要 - 纳入人为优先知识的度量语义图的创建代表了环境的高级突出。然而,构建此类地图构成了与多模式传感器数据融合,实时映射性能的融合以及结构和语义信息一致性的保留相关的挑战。在本文中,我们引入了一个在线度量 - 语义映射系统,该系统利用LIDAR-Visual-Visual-Visual惯性传感生成了大型室外环境的全局度量标准网格地图。利用GPU加速度,我们的映射过程达到了出色的速度,无论场景尺度如何此外,我们将所得地图无缝地集成到现实世界中的导航系统中,从而实现了基于公制的语义地形评估和在校园环境中的自主点 - 要点导航。通过对包含24个序列的公共可用数据集进行的广泛实验,我们证明了映射和导航方法的有效性。对从业者的注释 - 本文在复杂的,非结构化的环境中应对具有丰富语义元素的复杂,非结构化环境中的移动机器人的竞争挑战。传统导航依赖于几何分析和手动注释,努力区分相似的结构,例如道路和人行道。我们的地图集成到现实世界中的导航系统中,通过与公共和专有数据集进行实验,可在本地化和地形评估中有效。索引条款 - 自主驾驶,映射,导航我们提出了一个在线映射系统,该系统为大型室外环境创建全局标准网格地图,利用GPU加速速度,并克服了现有的实时语义映射方法的限制,这些方法通常可以配置为室内设置。未来的工作将集中于整合基于内核的方法,以提高地图的语义准确性。
摘要 - 多个现场机器人的协作对于大规模环境的导航和映射是必需的。在穿越时,考虑到每个机器人性质的遍历性估算对于确保机器人的安全并确保其性能至关重要。即使在结构化的环境中,不考虑地形信息的行驶也可能导致平台严重损坏,例如由于陡峭的斜坡或由于突然的高度变化而导致的下降。为了应对这一挑战,我们提出了Diter ++,多机器人,多主题和多模式数据集,包括地面信息。使用向前的RGB摄像头和面向接地的RGB-D相机,热相机,两种类型的激光镜头,IMU,GPS和机器人运动传感器获得数据集。数据集和补充材料可在https://sites.google.com/view/diter-plusplus/上找到。
摘要:传统上,定量脑电图(QEEG)研究收集在受控实验室环境中的数据,这些数据限制了科学结论的外部有效性。为了探测这些有效性限制,我们使用移动脑电图系统记录了人类参与者的电生理信号,而他们位于受控的实验室环境中,并且一个不受控制的户外环境表现出了几种适度的背景影响。参与者在这些录音期间执行了两项任务,其中一项与几个复杂的认知功能(数字,注意力,记忆,执行功能)相关的大脑活动,而另一个引人入胜的脑活动。我们计算了三个频带(theta:4-7 Hz,alpha:8-13 Hz,低β:14–20 Hz)的EEG光谱功率,其中已知EEG振荡活性与这些任务参与的神经认知状态相关。null假设的显着性测试产生了每项任务所涉及的神经认知状态的典型脑电图效应,但在默认的大脑状态期间两个背景记录环境之间只有beta波段功率差。贝叶斯分析表明,其余的环境无效不太可能反映测量不敏感性。这种总体结果模式支持实验室脑电图功率的外部有效性,用于在中度不受控制的环境中参与的复杂和默认神经认知状态。
搬迁沙田污水处理厂往岩洞的实时大数据人工智能环境影响评估 (AIEIA) 执行摘要 搬迁沙田污水处理厂往岩洞(本项目)的环境影响评估中,位于沙田马场和周边河道的彭福公园鹭鸟林被列为环境指标之一。目前,香港对鸟类生态栖息地的监测主要以人为观察为主,而人为观察的时间间隔有限。由于繁殖季节环境变化微妙,人为不易分辨鸟类行为的细微变化。渠务署藉此机会与香港科技大学合作,通过在项目下对彭福公园鹭鸟林进行先导观察,探索将最先进的绿色人工智能 (AI) 技术融入环境监测。观察是明智行动的第一步。完整的阵列数据收集系统 (ADCS) 和实时数据提取管道架构经过全面设计,可实现模块化,并可成功部署在各种结构中,确保在所有环境中可靠运行。ADCS 具有多种优势,可满足户外环境长期监测的需求:(i) 自动连续录制;(ii) 高分辨率视频;(iii) 高帧率视频;(iv) 巨大的本地数据存储;(v) 保护恶劣环境(例如极端天气条件)。采用一种新的视频压缩标准高效视频编码 (H.265) 来处理、存储和传输高分辨率视频,同时保持视频质量。在户外环境中实现数据采集自动化之后,实施了 AI 算法,以从长达数月的数据中检测鸟类。本研究重点是检测大白鹭和小白鹭,即研究地点的主要鸟类。AI 算法开发的主要挑战是缺乏香港鸟类的标记数据集。为了解决这个问题,我们利用 3D 建模制作了大白鹭和小白鹭的合成鸟类数据集。在虚拟图像的开发过程中,我们应用了姿势和身体大小等显著特征的大量变化,这反过来又迫使模型专注于专家用来区分鸟类物种的细粒度鸟类特征,例如颈部和头部。经过训练的 AI 模型能够在不同背景下以高预测分数区分和定位鸟类物种,平均准确率达到 87.65%。我们的人工智能 ADCS 解决方案比传统的人工观察具有多种潜在优势,能够在不同的天气条件下为不同物种的鸟类计数、行为研究、空间偏好以及种间和种内相互作用提供密集的表面。这项研究的结果和发现有利于未来规划环境监测工作以及项目下的工作阶段,以尽量减少对彭福公园鹭鸟林的潜在环境影响。
国防部 LEC 使用本卷对制定每个国家特定 FGS 所需的保护进行比较分析。比较分析考虑了 HN 环境标准、国际协议和本卷中的标准,并使用更具保护性的标准来制定 FGS。FGS 确保 HN 内国防部各部门运营的所有设施都一致应用环境标准。遵守当前 FGS 即可遵守本卷的标准,因为本卷的标准反映在 FGS 中。如果尚未考虑将本卷的更新或修订纳入 FGS,则设施必须遵守更具保护性的标准,无论是本卷还是 FGS 中的标准。
泄漏和杀虫剂 发起部门:国防部负责采购和保障的副部长办公室 生效日期:2020 年 6 月 29 日 可发布性:已获准公开发布。可在指令司网站 http://www.esd.whs.mil/DD/ 上查阅。 批准人:国防部负责保障的助理部长 W. Jordan Gillis。 目的:本手册(称为 OEBGD)由多卷组成,每卷都涉及环境管理的特定领域,如保护;空气和有毒物质;水;危险材料、储罐、泄漏和杀虫剂;以及废物。根据国防部指令 (DoDD) 5134.01 和 4715.1E 以及 2018 年 7 月 13 日国防部副部长备忘录中的授权,以及国防部指令 (DoDI) 4715.05 中的要求: