硅纳米结构(如纳米式阵列)在各种应用中具有巨大的潜力,例如光伏电池[1],传感器[2],信息存储[3],仅举几例。纳米果(NNS)被定义为具有较高纵横比的纳米材料。那些属于两个主要类别:单针,外部操纵以接触细胞和组织(近场显微镜(AFM),微型操纵器)或支持基板支撑的垂直高纵横比纳米结构的阵列。前者涵盖了各种纳米结构,包括纳米线,纳米柱,多孔纳米酮,纳米管和纳米膜。各种材料/尺寸/形状使每种类型的NN具有不同的特定感应需求的特性,也就是说,在机械生物学,纳米电机生理学,光遗传学,纳米遗传学,转染/载体化/矢量化(药物输送)中,各种应用[4] [4]。
量子技术利用量子力学定律(对世界最精确的物理描述)来实现全新的信息处理能力。主要的量子技术是量子计算机、量子通信和网络以及量子传感器。虽然这些技术都是从相同的概念发展而来的,但它们的目标和任务却大不相同。在本次研讨会上,我们将主要关注量子计算,其目标是在原子、离子、超导电路和光子等量子力学载体中存储和处理信息。当与环境隔离时,这些载体表现理想,可以无限期地保持信息完整。然而,实际上,它们不断与环境相互作用,导致存储的信息退相干。同样,对这些载体进行外部操纵以计算信息也远非理想,存在精度不足、背景噪声等问题。因此,必须保护存储的信息免受退相干的影响,并确保其处理对设备故障具有耐受性。在量子系统中,这种容错信息处理的最系统方法是使用量子纠错码。在本文中,我们简要概述了量子纠错和容错的基本原理。我们假设读者熟悉经典纠错或信道编码,但可能不熟悉量子信息。目标是为 QuIK'24 研讨会的与会者提供足够的背景知识,以便他们跟上受邀演讲、海报和讨论。虽然这不是对该领域的全面回顾,但我们将为读者提供充足的参考资料,以扩展此处讨论的基础知识。有关量子计算和量子纠错的历史回顾,我们建议读者参考 [1]–[4]。