VKL128 的时钟是用来产生 LCD 驱动信号和内部逻辑时序的。可软件配置系 统时钟源是内部 RC 振荡器( 32kHz )还是外部时钟源( OSCIN ),使用内部 RC 振荡器时 OSCIN 接地,系统时钟频率 (f SYS) 决定 LCD 帧频频率。
还有许多其他选项。例如,可以启用 CSS。CSS 代表时钟安全系统。如果启用,则当外部时钟发生故障时会产生不可屏蔽的中断。否则,MCU 将切换到使用其 HSI 或高速内部时钟。在此示例中,不会启用此功能。令人困惑的部分是框将显示“启用 CSS”,但实际上并未启用。
固定频率PWM操作确保开关噪声频谱被限制在600kHz基波及其谐波内,从而允许轻松进行后置滤波以降低噪声。外部时钟同步功能允许更严格的噪声频谱控制。静态功耗小于1mW,可延长电池供电系统的工作时间。两个控制输入(ONA,ONB)允许通过单个瞬时按钮开关进行简单的按压、按压关闭控制,以及传统的开/关逻辑控制。MAX1709还具有可编程软启动和电流限制功能,可实现设计灵活性和最佳电池性能。最大RMS开关电流额定值为10A。有关具有较低电流额定值、较小尺寸和更低成本的设备,请参阅MAX1708数据手册。
TPS7H4001-SP 和 TPS7H4003-SEP 是集成 FET 的高电流 (18 A) 降压转换器,其主要特性是能够并联最多 4 个相位相差 90 度的器件,而无需外部时钟,旨在满足核心轨道上对更高电流日益增长的需求。0.6 V 基准电压使它们能够满足此轨道通常的低电压要求。TPS50601A-SP 是一款较小的 6 A 高效降压转换器,拥有十多年的实际使用经验,用于为许多辅助轨道供电。封装兼容的 TPS7H4002-SP 也可用于为辅助轨道供电,因为它在架构上与 TPS50601A-SP 非常相似,但电流限制较低,适合较小的电感器尺寸。对于类似的 6 A 抗辐射设计,TPS7H4010-SEP 在 4×6 mm WQFN 封装中提供了极其紧凑的设计,并且是 32 V in 下空间级开关稳压器中最宽的 V 值。
TM1681 的系统时钟用来产生系统工作的时钟频率。LED 驱动时钟、系统时钟可以取自片内的 RC 振 荡器(256KHz)或者使用 S/W 设置由外部时钟输入。系统振荡器构造如图7 所示。当SYS DIS 命令被 执行时,系统时钟停止,LED 工作循环将被关闭(这条指令只能适用与片内 RC 振荡器)。一旦系统时 钟停止时,LED 显示为空白,时基也会丧失其功能。LED_OFF 命令用来关闭 LED 工作循环,LED 工作 循环被关闭之后,用 SYS DIS 命令节省电源开支,充当省电命令;如果是片外时钟源被选择的话,使 用 SYS DIS 命令不能够关闭振荡器以及执行省电模式。晶体振荡器可以通过OSC 管脚提供时钟频率, 在这种情况下,系统将不能进入省电模式。在系统上电时,TM1681 默认处在 SYS DIS 状态下。
• 宽输入电压工作范围:4.2 V 至 36 V • 宽电池电压工作范围:最高 36 V,支持多种化学成分: – 1 至 7 节锂离子电池充电曲线 – 1 至 9 节 LiFePO 4 充电曲线 • 带 NFET 驱动器的同步降压-升压充电控制器 – 可调节开关频率:200 kHz 至 600 kHz – 可选同步至外部时钟 – 集成环路补偿和软启动 – 可选栅极驱动器电源输入,可优化效率 • 自动最大功率点跟踪 (MPPT),适用于太阳能充电 • 支持 USB-PD 扩展功率范围 (EPR) 的双向转换器操作(反向模式) – 可调节输入电压 (VAC) 调节范围:3.3 V 至 36 V,步进为 20 mV – 可调节输入电流调节 (R AC_SNS ):400 mA 至 20 A,步进为 50 mA,使用 5 mΩ 电阻 • 高精度 – ±0.5% 充电电压调节 – ±3% 充电电流调节– ±3% 输入电流调节 • I 2 C 控制,可通过电阻可编程选项实现最佳系统性能 – 硬件可调输入和输出电流限制 • 集成 16 位 ADC,用于电压、电流和温度监控 • 高安全集成 – 可调输入过压和欠压保护 – 电池过压和过流保护 – 充电安全定时器 – 电池短路保护 – 热关断 • 状态输出 – 适配器当前状态 (PG) – 充电器工作状态(STAT1、STAT2) • 封装 – 36 引脚 5 mm × 6 mm QFN