几何声学(GA)建模技术假设表面相对于感兴趣的波长较大。对于给定场景,从业者通常会创建一个具有大而平坦表面的 3D 模型,以满足很宽频率范围内的假设。这种几何近似会导致模拟声场的空间分布出现误差,因为会影响反射和散射行为的几何细节被忽略了。为了补偿近似值,建模者通常会估算表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学(GA)建模技术假设表面相对于感兴趣的波长较大。对于给定场景,从业者通常会创建一个具有大而平坦表面的 3D 模型,以满足很宽频率范围内的假设。这种几何近似会导致模拟声场的空间分布出现误差,因为会影响反射和散射行为的几何细节被忽略了。为了补偿近似值,建模者通常会估算表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学 - GA - 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的单个 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现错误,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、波长相关的变化。一种更确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学 - GA - 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的单个 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现错误,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、波长相关的变化。一种更确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学 GA 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现误差,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学 GA 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现误差,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学 GA 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现误差,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学 GA 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现误差,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学 GA 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现误差,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
放置是一项至关重要的任务,在VLSI物理设计中具有高计算复合物。现代的分析贴花将放置目标作为非线性优化任务,遭受了长时间的迭代时间。为了加速和增强放置过程,最近的研究转向了基于深度学习的方法,尤其是利用图形卷积网络(GCN)。但是,由于电路放置的复杂性涉及大规模的单元格和特定于设计的图形统计,因此基于学习的位置需要时间和数据消耗的模型培训。本文提出了礼物,这是一种无参数的技术,用于加速位置,植根于图形信号处理。礼物擅长捕获电路图的多分辨率平滑插图,以生成优化的放置解决方案,而无需进行耗时的模型训练,同时显着减少了分析放置器所需的迭代次数。实验结果表明,礼物可显着提高放置效率,同时达到竞争性或卓越的性能与最先进的垫片相符。,与