摘要:考虑到精确的农业,最新的技术发展引发了几种新工具的出现,这些工具可以帮助自动化农业过程。例如,在果园中准确检测和计数苹果对于最大程度地提高收获和确保有效的资源管理至关重要。但是,传统的技术在果园中识别和计算苹果存在一些内在困难。为了识别,识别和检测苹果,Apple目标检测算法(例如Yolov7)表现出很大的反射和准确性。但遮挡,电线,分支和重叠构成严重的问题,以精确检测苹果。因此,为了克服这些问题并准确识别苹果并在复杂的背景下从基于无人机的视频中找到苹果的深度,我们提出的模型将多头注意系统与Yolov7对象识别框架结合在一起。此外,我们还提供了实时计数的字节式方法,这可以保证对苹果的有效监控。为了验证我们建议的模型的功效,对当前的几种Apple检测和计数技术进行了彻底的比较评估。结果充分证明了我们的策略的有效性,该方法不断超过竞争方法,以相对于精度,回忆和F1分别获得0.92、0.96和0.95的非凡精确度,而低MAPE的低MAPE为0.027。
3.0 2023年7月21日更新的合规报告说明,以反映更新的系统用户界面。4.0 2024年3月7日,次要更新,以反映进口许可证申请中多头和多个目的地位置的实现。
总风险敞口:反映多头和空头投资头寸相对于净资产价值的总和。总风险敞口是基金杠杆率的一个指标。净风险敞口:这是多头和空头投资头寸相对于净资产价值的差额。风险价值 (VaR):衡量在给定置信水平的正常市场条件下,投资组合在一段规定时间内的潜在价值损失。例如,以 99% 的置信水平计算的一天 100 万美元的风险价值意味着,在正常市场条件下,假设投资组合持有量保持不变,投资组合在该时间段内损失 100 万美元或更多风险价值的可能性为 1%。需要注意的是,投资所经历的实际风险可能高于或低于预计的风险价值估计值,因为投资组合头寸和市场波动水平都可能发生变化。
正如Jevons Paradox强调的那样,人工智能(AI)在解决气候变化方面的计算需求不断增长引起了人们对低效率和环境影响的重大关注。我们提出了一个引人注意的量子物理信息知识的神经网络模型(AQ-PINNS)来应对这些挑战。这种方法将量子计算技术集成到物理知情的神经网络(PINN)中,以进行气候建模,旨在提高由Navier-Stokes方程所控制的流体动力学的预先准确性,同时减少计算负担和碳足迹。通过利用变异量子多头自我注意机制,我们的AQ-Pinns与经典的多头自我注意方法相比,模型参数降低了51.51%,同时保持了可比的收敛性和损失。它还采用量子张量网络来增强表示能力,这可以导致更有效的梯度计算并降低对贫瘠的高原的敏感性。我们的AQ-Pinns代表了朝着更可持续和有效的气候建模解决方案迈出的关键步骤。
全脑细胞结构的无偏表征代表了理解大脑功能的宝贵工具。为此,从2D切片到3D脑图的组织学标记物的精确映射是关键的。在这里,我们提供了两个新型的软件工具,促进了这一过程:对齐大脑和地图集(ABBA),旨在简化2D段的精确注册到3D参考地图集,而Braian,一个用于多头标记的集成套件,用于多头标记器自动序列,全脑统计分析,全脑统计分析和数据可视化。结合了这些工具,我们对三个最广泛使用的早期基因(IEG)的全脑表达进行了全面的比较研究。由于其神经活动依赖性表达,IEG已被用作神经活动的代表来产生行为后的无偏图映射,但是它们对整个大脑中神经元激活的响应均尚不清楚。为了解决这个问题,我们在与记忆有关的三种不同的行为条件下,系统地比较了三个大量使用的IEG的脑部表达CFO,ARC和NPAS4。我们的结果突出了其分布和诱导模式的主要差异,表明它们不代表整个大脑区域或活动状态的等效标记,而是可以提供互补信息。简介
投资经理使用一系列基础策略来部署资本,包括但不限于多头/空头股票、全球宏观、信贷、事件驱动和市场中性。基础策略将跨投资风格(例如,可能是基本面和量化或其他策略的组合)、市场部门、资产类别、投资主题和时间范围进行多样化,旨在减少基金对任何单一投资回报来源的依赖。
GPT-2模型体系结构。GPT-2模型包含N变压器解码器块,如左图所示。每个解码器块(中心面板)包括一个多头蒙版的注意层,一个多层感知层,归一化和辍学层。剩余连接(与加法操作员的分支线)允许该块从上一个块的输入中学习。使用Q,K和V向量计算出注意力层(右图),以捕获输入序列中的顺序关系。
摘要 - 在本文中,我们通过开发神经网络模型来大大扩展了机器人执行后续任务和该任务的变化的能力,从而从观察到的人类运动历史上预测未来的人类运动。我们提出了一个非自动回忆的变压器架构,以利用其并行性质,以便在测试时更容易训练和快速,准确的预测。所提出的结构将Human运动预测分为两个部分:1)人类轨迹,这是髋关节随时间的3D位置,以及2)人类姿势,这是所有其他关节在时间上相对于固定髋关节的3D位置。我们建议同时做出两个预测,因为共享表示可以改善模型性能。因此,该模型由两组编码器和解码器组成。首先,应用于编码器输出的多头注意模块改善了人类轨迹。第二,应用于与解码器输出相连的编码器输出的另一个多头自我发项模块有助于学习时间依赖性。我们的模型在测试准确性和速度方面非常适合机器人应用,并且相对于最先进的方法进行了比较。我们通过机器人后续任务证明了我们作品的现实适用性,这是我们提议的模型充满挑战而实用的案例研究。我们的模型预测的人类运动使机器人可以在情况下进行详细的人类运动,例如静止不动,即站立。它还使简单的控制策略能够琐碎地概括到人类关注的许多不同变化,例如后续行动。我们的代码和数据可在以下github页面上获得:https://github.com/mmahdavian/stpotr