附件 17 MEPC.269(68) 号决议(2015 年 5 月 15 日通过) 2015 年危险物质清单制定指南 海洋环境保护委员会, 忆及《国际海事组织公约》第 38(a) 条关于防止和控制船舶造成海洋污染的国际公约赋予海洋环境保护委员会的职能, 还忆及 2009 年 5 月举行的国际安全与环境无害化拆船大会通过了《2009 年香港国际安全与环境无害化拆船公约》(《香港公约》)及六项大会决议, 注意到《香港公约》附则第 5.1 和 5.2 条要求船舶应在船上备有危险物质清单该指南的制定和核实应考虑到本组织制定的导则,包括这些导则中包含的任何阈值和豁免, 还注意到 MEPC.197(62) 号决议,该决议通过了《危险物质清单制定导则》(简称《导则》)并决定对其进行不断审查, 认识到需要改进前述导则中包含的关于阈值和豁免的指导, 在其第 68 届会议上审议了污染预防和响应分委会在其第二次会议上提出的建议案, 1 通过载于本决议附件的 2015 年危险物质清单制定导则; 2 请成员国政府尽快或最迟在公约生效时应用 2015 年导则; 3 同意根据应用过程中获得的经验不断审查 2015 年导则; 4 取代 MEPC.197(62) 号决议通过的指南。
• 检索练习:阅读知识组织器的一部分,将其盖住,然后写下您能记住的所有内容。重复,直到您记住所有内容。• 抽认卡:使用知识组织器,在一张纸的一面写一个问题,在另一面写一个答案。请别人通过问问题来测试你,看看你是否知道答案。• 思维导图:将知识组织器中的信息转换成思维导图。然后重新阅读思维导图,并在一张一半大小的纸上尝试根据记忆重现思维导图中的关键短语。• 勾画:画一个图像来代表每个事实;这可以单独完成,也可以作为思维导图/抽认卡的一部分完成。• 教它:教别人你的知识组织器上的信息,让他们问你问题,看看你是否知道答案。
其中 RL 为阻性负载,V s /2 为电压源,S 1 和 S 2 为两个开关,i 0 为电流。其中每个开关并联连接到二极管 D 1 和 D 2。上图中,开关 S 1 和 S 2 为自换向开关。电压为正电流为负时,开关 S 1 导通;电压为负电流为负时,开关 S 2 导通。电压为正电流为负时,二极管 D 1 导通;电压为负电流为正时,二极管 D 2 导通。情况 1(当开关 S 1 处于 ON 状态且 S 2 处于 OFF 状态时):当开关 S 1 在 0 到 T/2 的时间段内处于 ON 状态时,二极管 D 1 和 D 2 处于反向偏置状态,而 S 2 开关处于 OFF 状态。应用 KVL(基尔霍夫电压定律)
在您所描述的情形中,财务困难无疑使您的客户处于一个艰难的境地。但是,受理局不会考虑导 致财务困难的原因,而只会研究直接导致错过优先权期限的原因。如果申请人故意选择不在优先 权期限内提交申请,他 / 她将无法证明错过截止日期是非故意的,因此无法满足细则 26 之 二 .3(a)(ii) 所指的非故意的标准。由于不符合非故意的标准, 因此也无法满足细则 26 之 二 .3(a)(i) 中更严格的 “ 适当注意 ” 的标准。对于任何临时的财务困难,请您注意,缴纳所有费 用并非获得国际申请日的必要条件,费用可以在受理局收到国际申请之日起一个月内缴纳,无需 支付任何附加费( PCT 细则 14.1(c) 、 15.3 和 16.1(f) )。
随着土地用途和活动的变化,导视系统策略旨在取代市中心现有的导视系统元素,这些元素随着时间的推移已经变得过时和分散。该策略旨在通过零售重组、多样化、不断扩大的休闲服务、创意产业和文化景点的增长来适应持续发生的变化。该策略为欣克利市中心公共领域总体规划战略中提出的初步建议增加了细节,并打算补充市中心公共领域的改进。在这种情况下,导视系统必须:
Masataka Sato 医学博士;Satoshi Kodera 医学博士、哲学博士;Naoto Setoguchi 医学博士;Kengo Tanabe 医学博士、哲学博士;Shunichi Kushida 医学博士、哲学博士;Junji Kanda 医学博士;Mike Saji 医学博士、哲学博士;Mamoru Nanasato 医学博士、哲学博士;Hisataka Maki 医学博士、哲学博士;Hideo Fujita 医学博士、哲学博士;Nahoko Kato 医学博士、哲学博士;Hiroyuki Watanabe 医学博士、哲学博士;Minami Suzuki 医学博士;Masao Takahashi 医学博士、哲学博士;Naoko Sawada 医学博士、哲学博士;Masao Yamasaki 医学博士、哲学博士;Shinnosuke Sawano 医学博士;Susumu Katsushika 医学博士;Hiroki Shinohara 医学博士、哲学博士;Norifumi Takeda 医学博士、哲学博士;Katsuhito Fujiu 医学博士、哲学博士;Masao Daimon 医学博士、哲学博士;Hiroshi Akazawa 医学博士、哲学博士;Hiroyuki Morita 医学博士、哲学博士;Issei Komuro 医学博士、哲学博士
在人类诞生之前,子宫中的信号和激素是胎儿的,外界的终生不断变化的环境。在出生的第一年,活动和睡眠周期在其轴上的24小时旋转中同步。在过去的几十年中,研究揭示了这些内部,普遍存在的生物细胞时钟可以影响人类中枢神经系统发展的某些最重要方面。神经元连通性以突触连接,树突状刺和轴突投影为特征,这是我们的认知功能和日常行为的组成部分。当神经元连通性的这些属性被破坏,失调或随着时间的流逝而恶化时,可能会出现多种认知缺陷,包括学习和记忆中的缺陷以及焦虑和抑郁等行为异常。衰老与昼夜节律内部时钟的鲁棒性下降有关,也导致了几种神经系统疾病,例如阿尔茨海默氏病(AD)。本评论将讨论从出生到死亡的昼夜节律系统和神经可塑性的一些研究。转录 - 翻译反馈回路(TTFL)是昼夜性细胞节奏的核心昼夜节律机制。称为核心循环,此
单位: 方法: C、S:□ 燃烧后红外吸收法 O:□ 氦气熔融后红外吸收法 N:□ 氦气气流中熔融后热导法 H:□ 氩气气流中熔融后热导法 :□ ICP原子发射光谱法 :□ ICP质谱法 :□
摘要 本文介绍了一种高增益运算跨导放大器结构。为了实现具有改进的频率响应的低压操作,在输入端使用体驱动准浮栅 MOSFET。此外,为了实现高增益,在输出端使用改进的自共源共栅结构。与传统的自共源共栅相比,所用的改进的自共源共栅结构提供了更高的跨导,这有助于显著提高放大器的增益。改进是通过使用准浮栅晶体管实现的,这有助于缩放阈值,从而增加线性模式晶体管的漏极-源极电压,从而使其变为饱和状态。这种模式变化提高了自共源共栅 MOSFET 的有效跨导。与传统放大器相比,所提出的运算跨导放大器的直流增益提高了 30dB,单位增益带宽也增加了 6 倍。用于放大器设计的 MOS 模型采用 0.18µm CMOS 技术,电源为 0.5V。