摘要:通常认为开放壳分子石墨烯片段的反应被认为是不希望的分解过程,因为它们导致诸如π-磁性等所需特征的丧失。氧化二聚二聚体表明,这些转化是通过在单个步骤中形成多个键和环制造复杂结构的合成结构的希望。在这里,我们探讨了使用Phena-lenyyl的这种“不希望”反应来构建应变并提供非平面多环芳烃的可行性。为此,我们设计并合成了一个双烯基单元通过双苯基骨架链接的Biradical系统。设计促进了分子内级联反应对螺旋扭曲的鞍形产物,其中一个反应中的关键转换(环锁和环形融合)在一个反应中。通过单晶X射线衍射分析证实了最终的绿吡就产物的负曲率,该植物诱导的曲率通过分辨率通过分辨率的映异构体验证,该螺旋扭转验证了螺旋扭曲,这些向映异构体显示圆形极化的发光和高构型稳定性。
由线性融合的多环芳烃(PAH)组成,取决于它们的大小,形状,最重要的是边缘结构。基于边缘NRS可以分类为coveed,扶手椅边缘和锯齿形边缘NRS。9 - 13 Cove-Edge-NRS 14具有特别的兴趣,因为它们有可能是手性的,这是由于Cove地区的空间障碍引起的非平面性。圆形的NRS可以采用扭曲的con,无论是螺旋的还是摇摆的(随机扭曲),包括沿着其边缘的特定c s层。15 - 18然而,由于螺旋构和摇摆构构之间的最小相对能量差异,由于内部海湾的手性迅速,螺旋构和摇摆构构之间的相对能量差异很小。14,19,20具有ord区域的NR,例如Wang等人的Supertwistacene 21。和三分之一的HBC(Hexa- peri -hexabenzocoronene)22由Campana等人。- 表现出较高的屏障,可以室温手性分辨率。带有海湾区域的纳米摄影师相对扭曲相对困难,因为大多数环在正交平面上占据了,替代方案有限。
2004 年开展的 CCQM 试点研究由三部分组成:CCQM-P31a 有机溶液 - 多环芳烃 (PAH)、CCQM-P31b 有机溶液 - 多氯联苯 (PCB) 同类物和 CCQM-P31c 有机溶液 - 氯化农药。CCQM-P31c 氯化农药研究结果总结如下。在 2004 年 4 月的有机分析工作组 (OAWG) 会议和 2004 年 10 月的 OAWG 会议(北京 2004)上审查了 P31c 结果后,决定继续进行溶液中氯化农药的关键比较研究 (CCQM-K39),同时进行溶液中氯化农药的第二项试点研究 (CCQM-P31c.1)。氯化农药是人为化合物,在停止使用后多年仍会残留在环境中,特别是在亲脂性基质中。四种农药是研究的目标分析物:林丹(γ-HCH);4,4'-DDE;4,4'-DDT;和反式九氯。目标农药中有三种是之前研究的目标化合物(CCQM-K5 鱼油中的 4,4'-DDE、CCQM-P10 鱼油中的γ-HCH 和 CCQM-K21 鱼油中的 4,4'-DDT)。反式九氯被选为氯丹系列农药的代表。
地点 SEAD-025(塞内卡陆军仓库 8 的消防训练区)的环境责任。地点历史:该地点以前称为 SEAD-016/017,包括以前和现有的爆米花工厂。“废弃的失活炉 (SEAD-016)”位于 SEDA 的东中部,由 2.6 英亩的围栏土地和草地、一个储存区和放置失活炉的建筑物组成。“现有失活炉 (SEAD-017)”位于 SEAD-016 的西南侧,由一座失活炉建筑组成,周围环绕着一条碎页岩路。RI 确定了 SEAD-016 的建筑材料和土壤中的铅以及土壤中的多环芳烃。SEAD-016 土壤中的铅浓度令人担忧。GW 中的金属也被确定为污染物。监管机构于 2006 年 9 月 29 日签署了 ROD。RA 于 2007 财年进行,将受污染的土壤移至经批准的场外处置设施,并拆除现场所有建筑物。RA 完成后,启动了 L TM,GW 采样开始表明移除行动不会对 GW 产生任何进一步影响。
从二维 (2D) 分子构建富含 sp3 的三维 (3D) 支架极具挑战性,但对有机合成和药物发现项目有重大影响。1 [4 + 2] 环加成反应被认为是实现此目的的有力工具,其中两个新的 s 键和一个 p 键由两个简单的不饱和反应组分二烯和亲二烯体在 3D 六元环拓扑中形成(图 1a)。2,3 事实上,这种热允许过程多年来一直是一种基本反应类型,展示了其分子复杂性产生能力。4 在这方面,多环芳烃如萘也含有交替双键。此外,它们是丰富且廉价的原料化学品。 5 然而,这些 2D 分子在 3D 复杂环加成反应中的应用有限,因为与破坏芳香性(共振能量 = 80.3 kcal mol −1 )和选择性(图 1b 和 c)赋予的稳定性相关的严峻挑战。 6 典型的萘热 [4 + 2] 环加成需要苛刻的反应条件(高温高达 210 C,压力高达 10 3 atm),7
缩写:HHV,高热值;HHV t,产品的高热值;HHV 0,原料的高热值;T i ,着火温度;T f ,最大燃烧速率对应的温度;M t ,时刻t的产品质量;M 0 ,原料的初始质量;db,干基;EC,电导率;TG,热重法;DTG,导数热重法;V max ,最大燃烧速率;T f ,最大燃烧速率时的温度;FR,燃料比,CI,燃烧性指数;VI,挥发性可燃性;D i ,着火指数;S,燃烧特性指数;,质量产率比;,能量产率比;PM,颗粒物;HC,碳氢化合物;NO x ,氮氧化物;PAH,多环芳烃;CSR,反应后焦炭强度;CRI,焦炭反应性指数; VM,挥发性物质;BF,高炉;BDF,生物质衍生燃料;RDF,垃圾衍生燃料;CGE,冷煤气效率;HE,热煤气效率;CCE,碳转化效率;ECE,能源转换效率;SER,单位能源需求;m 合成气,合成气质量流速;M 合成气,摩尔质量
在气溶胶或气相中,可以找到许多不同类别的大约7,357种不同类别的化学品(4)。tar(总气溶胶残基)是去除水和尼古丁后收集的固体的重量。焦油是粘稠的棕色物质,它染色牙齿,然后将手指变成黄棕色。焦油是被困在剑桥玻璃纤维过滤器中的材料,保留了所有颗粒物材料的99%。气态相由尼古丁组成,尼古丁是一种上瘾的物质,但在低剂量中,它相对无害,轻度刺激/松弛剂和一氧化碳。慢性碳一氧化碳暴露会在浓烟中增加羧基血红蛋白浓度高达10%,从而产生功能性贫血和相关的低氧血症(5)。为评估其中最重要的内容,本文遵循禽类和染色的准则(6),他们建议鉴定具有最大潜力的毒性作用的化学成分,特别是与癌症,呼吸道,呼吸道和心血管疾病相关的化学成分。对于CVD,氰化物,砷和齿条被认为是主要风险,而其他担忧是N-亚硝基胺和多环芳烃。这些问题,以及霍夫曼(7)生物活性化学物质清单,可用于将有毒化学物质与其他香烟烟中的其他化学物质区分开。
摘要:进行了比较定量结构 - 保留关系(QSRR)研究,以预测使用分子描述符的多环芳烃(PAHS)的保留时间。分子描述符是由软件龙生成的,并用于构建QSRR模型。还考虑了色谱参数的影响,例如流量,温度和梯度时间。使用人工神经网络(ANN)和部分最小二乘回归(PLS-R)来研究保留时间(以响应为响应)和预测因子之间的相关性。通过遗传算法选择了六个描述符,以开发ANN模型:分子量(MW);环描述符类型NCIR和NR10;径向分布功能RDF090U和RDF030M;以及3D-MORSE的描述符MOR07U。PLS-R模型中最重要的描述符是MW,RDF110U,MOR20U,MOR26U和MOR30U;边缘邻接Indice SM09_AEA(DM);基于3D矩阵的描述符spposa_rg;和逍遥布H7U。构建模型用于预测校准集中未包含的三个分析物的保留。考虑到预测集的统计参数RMSE(分别为PLS-R和ANN模型的0.433和0.077),该研究证实了与色谱参数相关的QSRR模型可以通过非线性方法更好地描述。
多环芳烃 (PAH) 是威胁生态系统和人类健康的普遍污染物。在这里,我们分离并鉴定了一株新菌株 Hydrogenibacillus sp. N12,它是一种嗜热 PAH 降解菌。菌株 N12 在 60!C 以上利用萘作为唯一碳源和能量来源,并且还与许多其他 PAH 共同代谢。通过气相色谱-质谱 (GC-MS) 和稳定同位素分析在萘分解代谢中鉴定了代谢物。基于所鉴定的代谢物,我们提出了两种可能的代谢途径,一种是通过水杨酸,另一种是通过邻苯二甲酸。全基因组测序显示,菌株 N12 拥有一条 2.6 Mb 的小染色体。结合遗传和转录信息,我们揭示了萘降解的新基因簇。这些基因被命名为 nar AaAb,预计编码萘双加氧酶的 α 和 β 亚基,随后被亚克隆到大肠杆菌中,并通过全细胞转化检测酶活性。还表征了降解其他几种三环 PAH 的能力,表明除了萘降解基因簇外,菌株 N12 中还共存着其他组成性表达的酶系统。我们的研究为嗜热 PAH 降解剂在生物技术和环境管理应用中的潜力提供了见解。
摘要:电气化运输具有多种好处,但也引发了一些担忧,例如锂离子电池中使用的易燃配方。牵引电池中的火灾可能难以扑灭,因为电池单元受到良好保护且难以接触。为了控制火势,消防员必须延长灭火剂的使用时间。在这项工作中,对三辆车和一个电池组火灾测试中的灭火水进行了分析,以确定其中的无机和有机污染物,包括颗粒结合多环芳烃和烟灰含量。此外,还确定了收集的灭火水对三种水生物种的急性毒性。火灾测试中使用的车辆既有传统的汽油燃料车,也有电池电动车。在所有测试中,对灭火水的分析表明,它们对测试的水生物种具有高毒性。发现几种金属和离子的浓度高于相应的地表水指导值。检测到的全氟和多氟烷基物质的浓度在 200 至 1400 ng L − 1 之间。冲洗电池使全氟和多氟烷基物质的浓度增加到 4700 ng L − 1 。与从传统车辆分析的水样相比,来自电池电动汽车和电池组的灭火水中含有更高浓度的镍、钴、锂、锰和氟化物。关键词:电池电动汽车、锂离子电池、火灾测试、灭火水、生态毒性■ 介绍