摘要。先进的多结太阳能电池 (MJSC) 已成为光伏文献中效率更高的领跑者。它以效率仅为 20% 的串联太阳能电池开始其发展历程,如今,它已通过六个结组合达到了令人印象深刻的 47.1% 的光转换效率 (PCE)。自 20 世纪 90 年代初以来,这些太阳能电池已用于太空应用。最近,也有将这种类型用于地面应用的趋势。然而,在过去的三十年中,制造工艺的复杂性和高成本一直是重大挑战。光伏 (PV) 界见证了各种解决这些障碍的制造方法。本文回顾了 III-V MJSC 及其制造工艺的计算和实验研究方法的进展。此外,它还解决了阻碍这些电池及其前景发展的障碍。本评论收集了有关 III-V 族 MJSC 的少量文章的见解,以便及时、有意识地为新进入者、专家和从业者提供有关研究方法、发展技术、现状、挑战和机遇的全面指导。
太空中的带电粒子辐射,包括范艾伦带中捕获的质子和电子以及太阳耀斑质子,是降低太阳能电池性能的最重要因素。目前,由于两项发展,太空光伏发电正在发生重大转变:i) 新任务采用电轨道提升,将等效辐射通量提高多达十倍。ii) 四结器件在太空发电中势头强劲,这些器件采用变质生长或晶圆键合等新生长技术制造。因此,有必要了解新四结以及当前使用的三结电池在这种新环境中的退化行为。为了实现这一目标,开始了一场退化运动。三结和四结电池以及它们各自的同型电池在粒子加速器中用能量为 1 和 3 MeV 的电子和能量为 1、2 和 5 MeV 的质子进行辐照。选择的能量和通量应能代表太空中的辐射环境。对电池进行表征,以确定其电特性和特征退化曲线。为了分析退化数据,采用了位移损伤剂量法:明确引入原子位移阈值能量 T d , eff 作为拟合参数。通过这一改变,非电离能量损失通过分析计算得出。这导致单条曲线上的电子数据崩溃,而这是获得特征退化曲线所必需的。与之前的分析方法不同,不需要引入没有物理意义的额外指数。改进的分析方法已成功应用于 4J 和 3J 电池以及它们各自的同型电池的退化数据。获得了短路电流、开路电压和最大功率点功率的特征退化曲线、退化参数和原子位移阈值能量。对于 3J 电池数据的崩溃,发现阈值能量为 21 eV 的 GaAs NIEL。对于 4J 电池数据的崩溃,发现阈值能量为 25 eV 的 In 0.3 Ga 0.7 As NIEL。计算了特定电轨道提升任务的粒子环境。使用计算出的粒子环境以及确定的 4J 退化特性,根据盖玻片厚度确定了电池的退化。发现最大功率点的功率下降到 87%
材料中,CNCs的排列起着至关重要的作用。到目前为止,已证明有几种有效的方法来排列CNCs,例如使用铸造蒸发法[6]、剪切力[7]、磁场[8]和电场。[9]除了上述方法所需的复杂装置或CNC薄膜的固有脆性外,最近出现了一种基于液体行为辅助策略的排列CNCs的新方法。[10]使用动态水凝胶体系来驱动CNCs的排列,其中CNCs的取向由外力产生。当纳米材料在空气干燥后相对位置固定时,就得到了颜色可调的CNC混合薄膜。另一方面,为了克服从天然原料中分离CNCs的问题,例如苛刻的条件或高能耗,[11]我们开发了一种新的可回收、选择性的碱性高碘酸盐氧化方法,从而可以高产率地制备PO-CNCs。 [12] 然而,PO-CNCs 上羧基含量相对较少,削弱了水凝胶前体中 PO-CNCs 的稳定性,并且由于许多其他溶解化合物的存在,可能导致 PO-CNCs 聚集,这也给将 CNCs 均匀嵌入潜在光学器件材料带来了普遍挑战。由于水凝胶中 CNCs 的取向依赖于剪切力,因此要求水凝胶具有较高的拉伸性和足够的韧性。由于缺乏有效的能量耗散机制,传统水凝胶通常机械强度差、拉伸性低。[13] 因此,人们已采用各种策略(包括静电相互作用 [14] 双网络结构 [15] 滑环连接 [16] 和疏水缔合 [17])进行交联和能量耗散,以提高水凝胶的性能。为了简化CNCs与聚合物基质之间的相互作用,避免所得光学材料中过多的变量,一种通过共价键交联的聚丙烯酰胺(PAAm)水凝胶具有高透明度和适用的机械性能等优势,是通过液体行为辅助法对PO-CNCs进行取向的有希望的候选材料。[18]中性水凝胶前体溶液可使PO-CNCs稳定存在。此外,其他光学材料,如金纳米棒(GNR),也可以适应这种水凝胶体系,其中表面等离子体共振(SPR)将诱导可见光区域的光吸收。[19]因此,这种水凝胶
抽象的水凝胶微球是一种新型的功能材料,引起了各种田间的关注。微流体是一种控制和操纵微米尺度的流体的技术,由于其能够产生具有控制的几何形状的均匀微球,因此已经成为一种有前途的水凝胶微球来制造水凝胶微球的方法。通过微流体设备的开发,可以构建具有多个结构的更复杂的水凝胶微球。本综述概述了设计和工程水凝胶微球的微孔进步。首先要引入水凝胶微球和微流体技术的特征,然后讨论用于制造微流体设备的材料选择。然后描述了用于单组分和复合水凝胶微球的微流体设备的进展,还提供了优化微流体设备的方法。最后,这篇综述讨论了将来微流体物质在水力微球中的关键研究方向和应用。
摘要 光伏太阳能电池阵列具有高可靠性、坚固耐用、成本效益高和环境友好等特点,是卫星的主要电源。在卫星太阳能电池阵列中,瓦特/平方米是一个非常重要的参数,因为太阳能电池阵列面积的任何减少都会减轻重量并延长任务寿命。同样,降低每瓦成本也会降低卫星的成本。为了实现这一目标,太阳能电池的性能不应受到任何损害。意大利CESII开发了一种成本更低的新型多结太阳能电池(CTJ-LC),同时不影响性能。在太空中,颗粒辐射是太阳能电池性能的主要威胁之一。辐射会导致太阳能电池出现缺陷并降低性能。本文采用不同的表征技术对这些低成本太阳能电池进行了辐射暴露后的性能研究,并与标准多结太阳能电池的性能进行了比较。本文详细介绍了表征和测试结果。
8. CS Clark. 等,“航天用商用镍镉电池:一种行之有效的低地球轨道卫星电力存储替代品”。载于:第五届欧洲空间电力会议论文集,西班牙塔拉戈纳,9 月 21 日至 25 日(1998 年)。
摘要。众所周知,多结太阳能电池中的发光耦合效应有助于通过载流子重新分布实现子电池之间的电流匹配。我们使用防潮全无机钙钛矿量子点 (PQD) 膜展示了 III-V 多结太阳能电池装置中的载流子重新分布。这种疏水性 PQD 膜应用于完整的 III-V 多结太阳能电池装置。这成功地展示了垂直方向的电流重新分布,表现为较低带隙子电池中的电流收集增加,以及横向的电流重新分布,从发光起源的较高带隙子电池相邻的较低带隙子电池中电流收集均匀性改善可以看出。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JPE.10.042005]
更广泛的背景 尽管太阳能和风能的成本已大幅下降,但由于需要某种形式的能源储存,它们在电网中的使用程度受到限制。因此,储存问题已成为缓解气候变化的最重要技术障碍之一。目前和未来的电池价格预测过于昂贵,无法实现可再生能源的全面普及,因此必须寻找替代方案。在这里,我们介绍了一种不太直观的方法,称为热能电网储存,该方法将电能储存为热能,然后根据需要将其转换回电能。众所周知,热能转化为电能受到热力学限制,因此会导致显著的效率损失。但是,将能源储存为热能而不是电能可以便宜 50-100 倍,因此 15-40% 的效率损失成为值得的权衡。在本文中,我们介绍了一种新的实施例,其在极高温度下(4 1900 1 C)储存热量,以最大程度地提高转换效率,并且它还可以使用不同类型的热机(即专门设计的光伏电池)代替涡轮机,以实现更低的成本。