摘要:多孔膜技术因其对绿色化学和可持续发展的显着贡献而在分离和生物学领域引起了极大的关注。由多乳酸(PLA)制造的多孔膜具有许多优势,包括低相对密度,高比表面积,生物降解性和出色的生物相容性。结果,它们在各种应用中表现出有希望的前景,例如石油 - 水分离,组织工程和药物释放。本文概述了使用静电纺丝,呼吸图和相分离方法在制造PLA膜方面的最新研究进步。首先,从孔形成的角度阐明了每种方法的原理。讨论和汇总相关参数与孔结构之间的相关性,随后对每种方法的优点和局限性进行了比较分析。随后,本文介绍了多孔PLA膜在组织工程,油水分离和其他领域中的多种应用。这些膜面临的当前挑战包括机械强度不足,生产效率有限以及孔结构控制的复杂性。相应地提供了增强和未来前景的建议。
(b)真实图像数据分布图4:通过U-NET的学习分布的相变。在(a)中,x轴是固有维度上的训练样本数量,而在(b)中,这是训练样本的总数。y轴是GL分数。我们使用(a)k = 2,n = 48和d k从3到6和(b)真实图像数据集CIFAR-10,celeba,ffhq和afhq的MOLRG分布产生的数据样本训练扩散模型。u-net记住训练数据时,GL分数很低,并且在学习基础分布时高。
摘要:水泥和建筑行业产生了全球约 10% 的碳足迹。土聚物和碱激活混凝土为传统混凝土提供了可持续的解决方案。由于其缺点,土聚物和碱激活混凝土的实际应用受到限制。可加工性是开发土聚物和碱激活混凝土面临的问题之一。进行了大量研究以提供解决方案,以提高使用不同高效减水剂 (SP) 的能力。本文广泛回顾了 SP 对土聚物和碱激活混凝土的影响。研究文章在过去 5 年内在高质量期刊上发表,以了解不同 SP 的化学成分并分析它们对土聚物和碱激活水泥砂浆和混凝土的确切影响。随后,确定了 SP 对水泥砂浆的正常稠度和凝结时间、可加工性、抗压强度、弯曲强度、劈裂拉伸强度、微观结构和土聚物和碱激发混凝土的吸水率的影响。SP 在以所需剂量使用时可改善土聚物和碱激发混凝土;剂量过大会产生负面影响。因此,选择最佳的减水剂至关重要,因为它会影响土聚物和碱激发混凝土的性能。
摘要 - 本文介绍了超维计算(HDC)域中数据的聚类。在先前的工作中,已经提出了一个基于HDC的聚类框架,称为HDCluster。但是,现有的HDCluster的性能并不强大。在初始化步骤中随机选择簇的高量向量,HDCluster的性能被降解。为了克服这种瓶颈,我们通过探索编码数据的相似性(称为查询过量向量,分配了初始群集过度向量。组内过度向量的相似性比组间高向量具有更高的相似性。利用查询过量向量之间的相似性结果,本文提出了四种基于HDC的聚类算法:基于相似性的K-均值,相等的Bin宽度直方图,相等的BIN高度直方图和基于相似性的亲和力传播。实验结果说明:(i)与现有的HDCluster相比,我们提出的基于HDC的聚类算法可以实现更好的准确性,更健壮的性能,更少的迭代和更少的执行时间。基于相似性的亲和力提出优于八个数据集上的其他三种基于HDC的聚类算法,而聚类准确性则高于2%约38%。(ii)即使对于一通聚类,即没有群集高量向量的任何迭代更新,我们提出的算法也可以提供比HDClter更强大的聚类精度。(iii)在八个数据集上,当八分之一的数据集投影到高维空间上时,八分之一可以达到更高或可比的精度。传统聚类比HDC更可取,当时簇数k的数量很大。
摘要:聚甲基丙烯酸乙酯 (PEMA) 溶于乙醇,乙醇是 PEMA 的非溶剂,这是因为添加的胆汁酸生物表面活性剂石胆酸 (LA) 具有溶解能力。避免使用传统的有毒和致癌溶剂对于制造用于生物医学的复合材料非常重要。高分子量 PEMA 浓溶液的形成是使用浸涂法沉积薄膜的关键因素。PEMA 薄膜可为不锈钢提供防腐保护。制备了复合薄膜,其中包含用于生物医学应用的生物陶瓷,例如羟基磷灰石和二氧化硅。LA 促进羟基磷灰石和二氧化硅在悬浮液中的分散以进行薄膜沉积。布洛芬和四环素被用作制造复合薄膜的模型药物。使用浸涂法成功制备了 PEMA-纳米纤维素薄膜。研究了薄膜的微观结构和成分。本研究中开发的概念性新方法代表了一种多功能策略,用于制造用于生物医学和其他应用的复合材料,使用天然生物表面活性剂作为溶解剂和分散剂。
量子聚类 (QC) 是一种基于量子力学的数据聚类算法,通过用高斯函数替换给定数据集中的每个点来实现。高斯函数的宽度为 𝜎 值,这是一个超参数,可以手动定义和操纵以适应应用。数值方法用于查找与聚类中心相对应的量子势的所有最小值。在此,我们研究了表达和查找与二维量子势的最小值相对应的指数多项式的所有根的数学任务。这是一项杰出的任务,因为通常无法通过分析解决此类表达式。但是,我们证明,如果所有点都包含在大小为 𝜎 的方形区域中,则只有一个最小值。这个界限不仅在通过数值方法寻找解决方案的数量方面有用,它还允许提出一种“每个块”的新数值方法。该技术通过将某些粒子组近似为加权粒子来减少粒子数量。这些发现不仅对量子聚类问题有用,而且对量子化学、固体物理和其他应用中遇到的指数多项式也有用。
聚(3-己基噻吩) (P3HT) 被发现是一种高效的低密度聚乙烯 (LDPE) 电导率降低添加剂,这为共轭聚合物领域开辟了一个新的应用领域。降低绝缘材料在高电场下的直流 (DC) 电导率的添加剂引起了广泛的研究兴趣,因为它们可能有助于设计更高效的高压直流电力电缆。研究发现,0.0005 wt% 的超低浓度区域规则性 P3HT 可将 LDPE 的直流电导率降低三倍,这意味着迄今为止所有电导率降低添加剂中效率最高的。这里建立的方法,即使用共轭聚合物作为单纯的添加剂,可能会在绝对数量上增加需求,超过薄膜电子产品所需的数量,这将使有机半导体从一种小众产品转变为大宗化学品。
多-ADP-核糖聚合酶(PARP)催化蛋白质聚ADP-核糖基化(parylation)。这种酶促翻译后的阳离子需要烟酰胺腺苷二核苷酸(NAD +)作为ADP-核糖的供体。ADP-核糖在各种类型的氨基酸残基的侧链之间的共价附着后,PARP可以继续在核糖基2 0 -OH位置依次添加ADP-核糖,从而导致线性或分支的聚-ADP-核糖(PAR)poly-Mers,最多300 ADP-ribose单位。1,2作为PARP家族的创始成员,PARP1在遗传毒性条件下占75 - 95%的细胞核化活性。3 - 5除了抚养许多蛋白质底物外,PARP1还经历了强大的自身释放。通过将聚合物添加到自身和其他蛋白质中,PARP1介导的Parylation在
心脏转录组轮廓的聚类揭示了独特的:扩张的心肌病患者的亚组。verdonschot,J.A.J。;王,ping; Derks,K.W.J。; Adriaens,M.E。; Stroeks,S.L.V.M.;亨肯斯(M.T.H.M.); RAAFS,A.G。;锡金Koning,B。de; Wijngaard,A。VanDen; Krapels,I.P.C。;纳本(M。) Brunner,H.G。; Heymans,S.R.B。2023,给编辑的文章 /信(JACC-BASIC to Translatitation Science,8,4,(2023),pp。< / div>406-418)