拉格朗日乘数法。(10)数列和级数:数列、数列的极限及其性质、正项级数、收敛的必要条件、比较检验法、达朗贝尔比率检验法、柯西根检验法、交错级数、莱布尼茨规则、绝对收敛和条件收敛。(6)积分学:积分学的平均值定理、反常积分及其分类、Beta 函数和 Gamma 函数、笛卡尔和极坐标中的面积和长度、笛卡尔和极坐标中的旋转立体的体积和表面积。(12)多重积分:二重积分、二重积分的求值、三重积分的求值、积分阶数的变换、变量的变换、二重积分的面积和体积、三重积分的体积。 (10)向量微积分:向量值函数及其可微性、线积分、面积积分、体积积分、梯度、旋度、散度、平面格林定理(包括矢量形式)、斯托克斯定理、高斯散度定理及其应用。 (10)教材,
目录:第一单元:代数、向量和几何;第一章:方程的解;第二章:线性代数:行列式、矩阵;第三章:向量代数与立体几何;第二单元:微积分;第四章:微分学及其应用;第五章:偏微分及其应用;第六章:积分学及其应用;第七章:多重积分和 Beta、Gamma 函数;第八章:向量微积分及其应用;第三单元:级数;第九章:无穷级数;第十章:傅里叶级数;第四单元:微分方程;第十一章:一阶微分方程;第十二章:一阶微分方程的应用;第十三章:线性微分方程;第十四章:线性微分方程的应用;第十五章:其他类型的微分方程;第 16 章:微分方程和特殊函数的级数解;第 17 章:偏微分方程;第 18 章:偏微分方程的应用;第五单元:复分析;第 19 章:复数和函数;第 20 章:复函数微积分;第六单元:变换;第 21 章:拉普拉斯变换;第 22 章:傅里叶变换;第 23 章:Z 变换;第七单元:数值技术;第 24 章:经验定律和曲线拟合;第 25 章:统计方法;第 26 章:概率和分布;第 27 章:抽样和推断;第 28 章:方程的数值解;第 29 章:有限积分
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
模块 I(18 小时)- 矩阵初等变换 – 阶梯形式 – 通过简化为阶梯形式利用初等变换进行排序 – 利用初等变换解线性齐次和非齐次方程。向量的线性相关性和独立性 – 特征值和特征向量 – 特征值和特征向量的性质(不要求证明) – 线性变换 – 正交变换 – 对角化 – 利用正交变换将二次型简化为平方和 – 二次型的秩、指标、签名 – 二次型的性质 模块 2(18 小时) - 偏微分 偏微分:链式法则 – 齐次函数的欧拉定理陈述 – 雅可比矩阵 – 泰勒级数在二元函数中的应用 – 二元函数的最大值和最小值(不要求证明结果) 模块 3(18 小时) - 多重积分 笛卡尔和极坐标中的二重积分 – 积分阶数变换 – 使用二重积分计算面积 – 使用雅可比矩阵计算变量变换 – 笛卡尔、圆柱和球坐标中的三重积分 – 使用三重积分计算体积– 使用雅可比矩阵改变变量 – 简单问题。模块 4(18 小时) - 常微分方程 具有常数系数的线性微分方程 - 互补函数和特殊积分 - 使用参数变异法寻找特殊积分 - 欧拉柯西方程 - 勒金德方程 模块 5(18 小时) - 拉普拉斯变换 拉普拉斯变换 - 移位定理 - 变换的微分和积分 - 导数和积分的拉普拉斯变换 - 逆变换 - 卷积特性的应用 - 单位阶跃函数的拉普拉斯变换 - 第二移位定理(不需要证明) - 单位脉冲函数和周期函数的拉普拉斯变换 - 使用拉普拉斯变换解具有常数系数的线性微分方程。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
写出一组线性方程的矩阵表示并分析方程组的解 寻找特征值和特征向量 利用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数求不当积分 找出有/无约束的两个变量函数的极值。 评估多重积分并应用概念寻找面积、体积 UNIT-I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩计算,通过高斯-乔丹方法对非奇异矩阵进行逆计算,线性方程组:通过高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、利用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、利用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅在笛卡尔坐标系中)、不定积分的定义:Beta 函数和 Gamma 函数及其应用。 UNIT-IV:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。