摘要:本研究的目的是确定近东大学学生对使用 Google 应用程序进行移动学习的看法。研究中使用了研究人员开发的包含 20 个项目的数据收集工具。应用结果表明,数据收集工具的克隆巴赫系数为 0.942。本研究的摘要部分提供了一般信息。在方法部分,表格显示了学生的年龄和性别以及学生就读的院系。研究过程中收集的数据在结果和讨论部分给出,并由研究人员在结论部分进行评估。研究结果表明,学生对移动教育中的 Google 应用程序持积极态度。对数据进行统计分析后发现,学生使用 Google 应用程序可以使大多数任务更容易完成。因此,学生使用这些应用程序可以节省更多时间和精力。提供使用这些应用程序的教育并从这些应用程序中受益将是件好事。本研究收集的数据旨在为来自不同大学和国家从事这一主题研究的其他研究人员提供指导。关键词:人工智能;移动学习;谷歌应用;技术。引用方式:Bicen, H., & Arnavut, A. (2020)。谷歌人工智能方法和在移动学习中使用谷歌应用的统计结果。BRAIN。人工智能和神经科学的广泛研究,11 (1),121-130。https://doi.org/10.18662/brain/11.1/18
PC12 是同类飞机中制造最精良、飞行最安全的飞机之一。对吗?作者:John Morris 绝对正确!但既然如此,那么为什么在过去一年(2008 年 9 月至 2009 年 8 月)期间,[报告的] 事件(1)/ 事故(4 起致命)不幸增加?当局对所有 PC12 事故(视为已结案)以及美国大多数航空事故给出的主要原因是人为因素或空间定向障碍,通常意味着这是飞行员的错。无论使用何种措辞,将其归咎于飞行员,有时似乎是一个过于简单的借口,而且不公平,尽管将其归咎于其他人(或事物)已成为一种全国性的消遣。然而,与所有其他指责者不同,在提到人为因素的情况下,飞机事故调查的范围及其结论确实指向某种判断或决策错误,而这种错误至少可能导致最终结果。我们都应该意识到导致这一结果的事件“链”,飞行员的行为或不作为可以形成联系或打破这一链条。所以我们又一次在这里讨论决策和风险管理。为什么?在我看来,我们需要另一次审查,也许还需要一个不同的视角。FAA [风险管理手册 - 2009 年 5 月]、AOPA 和其他来源提供了风险管理工具。它们非常有用,至少应该定期参考。但本文将重点关注从不同角度看到的决策和风险管理,即对 PC12 能力可能过度自信,导致决策失误和风险增加。在我多年的教学中,我通常会提到 Pilatus 如何出色地“确保”PC12 的飞行员安全,这意味着消除了许多飞行员可能导致事故/意外的经典方式。但没有人可以完全消除人为因素或消除破坏系统的手段。最终,重力总是占上风。因此,我们希望努力涵盖所有有形因素,并为无形因素做好准备。我很好奇,驾驶员是否会对 PC12 及其功能过于自信。让我们谈谈有形因素。技术是否助长了这种过度自信?当今的技术比以往任何时候都更加神奇,而且变化/改进的速度不是几年,而是几个月。因此,我确实相信,这会产生问题,成为链条中的一个环节,直到飞行员适应更新的可用技术。这方面的例子包括改进的下载天气信息、WAAS 升级的航空电子设备-自动驾驶仪接口,甚至 PC12NG 与 Apex 系统。我所说的调整是指正确理解和利用这些新信息,因为它适用于增强 PC12 的飞行。这也意味着了解这项新技术不那么明显的局限性,从而知道何时使用标准、基本的飞行判断,如果有疑问。另一个有形的是飞行员驾驶 PC12 的一般熟练程度,而不仅仅是仪表熟练程度。FAA 通过改变方法提供了一些帮助
2004 年,在美国,飞行员失误被列为 78.6% 的致命通用航空事故的主要原因,也是 75.5% 的通用航空事故的主要原因。对于定期航空运输,飞行员失误通常占全球已知原因事故的一半以上。飞行员总失误 所有三种飞行员失误的总和(黄色)。如果有多个原因,则使用最主要的原因。其他人为失误 包括空中交通管制员失误、飞机装载不当、燃油污染和维护程序不当。
人体就像计算机一样,包含无数的数据处理器。它们包括但不限于大脑、心脏和周围神经系统的化学电活动、从大脑皮层区域发送到我们身体其他部位的信号、内耳中处理听觉信号的微小毛细胞以及处理视觉活动的感光视网膜和眼角膜。身体不仅能够被欺骗、操纵或误导,而且还能被关闭或破坏——就像任何其他数据处理系统一样。身体从外部来源(例如电磁波、涡流或声能波)接收的“数据”或通过其自身的电或化学刺激产生的“数据”可以被操纵或更改,就像任何硬件系统中的数据(信息)可以被更改一样。
谁应该提交 OGE 表格 450“机密财务披露报告”?只有指定军人和级别或军衔等于或低于 O-6/GS-15 或其他当局规定的同等薪级的文职人员才需要提交 OGE-450。管理 OGE-450 的条例(DOD 5500.7-R,§ 7-300;5 CFR 2634.904(a))规定,应由其上级要求提交 OGE-450 的人员分为三类:1 那些负责亲自参与决策或行使重大判断 ,而无需实质性监督和审查 1 有关承包或采购决策的政府行动;管理或监督拨款、补贴、许可等;或监管或审计任何非联邦实体 的人员。非联邦实体通常是自给自足的非联邦个人或组织,由任何个人建立、运营和控制,这些个人在联邦政府官员、雇员或代理人的任何官方身份范围之外行事。 2 负责亲自和实质性参与决策或行使重大判断的人,在没有实质性监督和审查的情况下,做出预计会对非联邦实体的财务利益产生直接和可预见影响的决策。一个关键因素是该人是否真正做出最终机构决定,或者他或她是否提出需要由实际做出决定的上级官员审查的建议——如果是后者,则该人不应提交 OGE-450。 3 不属于上述任何一类但其上级决定他们应提交以避免卷入利益冲突并执行其任务的其他人员。此决定由其上级自行决定。在应用上面总结的规定时,以下基于个人级别或职等的分析框架可能会有所帮助:O-6/GS-15/员工 因为这些职位上的个人是空军高级领导人,并担任着重要职责,所以应该假定这些人员中的大多数必须申报。但是,主管可以免除这些人员的申报。1 OGE 于 2006 年修订了有关 OGE-450 的规定。OGE-450“申报人”的定义有了新的语言,表明在确定是否应将员工指定为 OGE-450 申报人时,主管应考虑员工在决策过程中是否“没有实质性的监督和审查”。参见 5 CFR 2634.904。例如,如果一个人有三个级别的审查,或者只有一个相当广泛的审查级别,除非主管认为提交文件对于避免卷入实际或明显的利益冲突以及执行其任务是必要的,否则他或她无需提交文件。
本文件是作为美国政府资助工作的记录而编写的。尽管我们认为本文件包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
本文件是作为美国政府资助工作的记录而编写的。尽管我们认为本文件包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
本文件是作为美国政府资助工作的记录而编写的。虽然本文件被认为包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文表达的作者的观点和意见不一定陈述或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
用于表征飞机机身撞击损伤的光学工具 N.Fournier 1 – F. Santos 1 - C.Brousset 2 – JLArnaud 2 – JAQuiroga 3 1 NDT 专家,2 AIRBUS France,3 Universidad Cmplutense de Madrid 摘要:在飞机制造/组装过程中或交付后的使用中,机身外部可能会出现表面损伤。大多数此类缺陷与飞机尺寸相比都很小,通常分布在机身的整个表面。为了正确表征这类异常,无损检测领域一直需要新手段。它们需要可靠、便携、快速和准确。对于此类缺陷,光学技术通常可以提供好的解决方案。然后,开发了基于光学的新技术来满足飞机制造商对损伤表征的要求。具体来说,我们开发了一种基于阴影莫尔效应的便携式设备,用于表征飞机机身撞击损伤的精确几何形状。该系统易于使用、便携、快速且成本低廉。它将有助于操作员对缺陷进行分类,并在检查过程中节省大量时间。经过一段时间的测试后,该设备应在飞机的总装线上使用。1 – 简介:在航空领域,国家和国际机构都要求制造商、航空公司和维修机构严格遵守有关飞机安全和保障的现行规定。飞机的结构在使用过程中承受着巨大的机械负荷,每个部件都有确定的使用寿命。必须定期检查零件以检查其可用性,并在其整个使用寿命期间安排系统的无损检测。当发生损坏时,必须对面板进行额外的控制,以确保其完整性以便继续使用。结构复杂性的增加以及为提高机械性能和减轻结构重量而使用的新材料导致了新的控制手段的不断发展。这些工具必须与旧工具一样高效,更快、更准确、更自动化,并且对人为解释的限制性更强。这种演变是航空业所有参与者遵循的整体质量战略的一部分。在所有可能影响结构完整性的损坏中,意外表面凹痕是最受监控的损坏之一:必须控制受影响的区域,以确保不会产生裂纹、分层或剥离。在进行任何更深的无损检测控制之前,操作员必须评估表面和深度损坏的严重性。制造商的设计办公室会给出公差,以根据这些标准将损坏分类,从而确定后续操作。然后,控制员必须恢复凹痕的精确几何形状,主要有两个原因:帮助他们对损坏进行分类,并帮助设计办公室确定受影响结构的新机械属性(当凹痕几何形状足够关键以运行此类程序时)。2 - 凹痕表征工具:Moireview©:开发了一种新工具来满足凹痕表征方面的需求。该系统基于光学,可以检索受影响区域的 3D 形状。它的开发是对目前使用的机械手段(深度计、粗糙度仪……)的补充。此工具的基本规格是快速、自主、便携和易于使用。负责检查的操作员必须在飞机周围走动以检测损坏情况,并可能从地面、平台或发动机舱进行测量。此后,他们应该能够携带该工具进入难以接近的区域。考虑到飞机的整个表面,与相对较小的凹痕(可能有很多且遍布整个飞机)相比,系统必须快速,以便在合理的时间内完成完整的检查。最后,考虑到设计办公室给出的公差,该工具必须足够精确。
