封面照片:“这些 SeaWiFS 图像显示了中国大型沙尘暴的发展过程,以及它与气象系统的相互作用,后者将沙尘带到了遥远的太平洋。在第一张 1998 年 4 月 16 日拍摄的图像中,靠近海岸的亮黄褐色云层是沙尘暴的中心,被锋面系统推动。在 4 月 20 日至 24 日的后续图像中,低压系统周围的大气环流夹带了沙尘暴,并将其带到北太平洋。4 月 25 日,此次沙尘事件产生的沙尘到达了北美西海岸。” 致谢:特别感谢美国国家航空航天局 SeaWiFS 项目 Orbimage Inc.、戈达德太空飞行中心分布式主动档案中心和中国杭州第二海洋研究所。SeaWiFS 图像由美国国家航空航天局戈达德太空飞行中心 SeaWiFS 项目的 Norman Kuring 制作。页面设计由研究和专业服务部的 Robert Simmon 完成。随附文本由 Raytheon ITSS 的 James Acker 撰写。http://eosdata.gsfc.nasa.gov/CAMPAIGN_DOCS/OCDST/asian_dust.html 免责声明:本文件中使用的名称和材料的呈现方式并不意味着联合国秘书处对任何国家、领土、城市或地区或其当局的法律地位,或对其边界或边界的划分发表任何意见。意见、图
• 天王星大气全耦合大气环流模型的进展 - 动力学和玩具模型,Jonathan H. Jiang (JPL) • 需要在 -90 °C 至 -30 °C 范围内测试冰融化探测器?,Paula do Vale Pereira (中佛罗里达大学) • 中红外快速先进光学生命探测探测器 (MIRACLE),Yamuna Phal (科罗拉多矿业学院) • 用于行星原位光谱的微型、多功能、微观有机/无机成分分析探测器 (MOCAPS),Mool Gupta (弗吉尼亚大学) • 使用低电容固态纳米孔探测海洋世界的生命,Vanya Buvac (Goeppert LLC) • 用于增强行星保护和污染控制的激活雾系统,Gregory Fridman (AAPlasma LLC) • BOREAS - 通过模拟探测木卫二的地下海洋冰冷的表面条件,Ilankuzhali Elavarasan(德克萨斯大学里奥格兰德河谷分校)• 用于高灵敏度宽带热检测的多孔硅基热电堆,Sabah Bux(JPL)• 用于检测未来潜在海洋世界任务的有机生物特征的 SCHAN 仪器,Victor Abrahamsson(JPL)• 即将到来的天王星恒星掩星活动和影子追逐者任务概念,Kunio Sayanagi(LARC)• SLUSH:进入海洋世界的冰钻探测器,Nicklaus Traeden(Honeybee Robotics)• 海洋世界和 Wolstenholme 峡湾冰下平台的样本选择和处理(SSHOW UP),Frances Bryson(康奈尔大学)• 用于导航木卫二的垂直进入机器人(VERNE),Frances Bryson(康奈尔大学)
在过去的一个世纪里(“小冰河期”后),由于气候变暖,阿尔卑斯山的冰川普遍消退(Oerlemans 等人,1998 年;Mann 等人,1999 年;Dyurgerov 和 Meier,2000 年;Grove,2001 年)。自 20 世纪 70 年代中期大气环流发生变化以来,这种普遍消退速度加快(McCabe 和 Fountain,1995 年;Dyurgerov 和 Meier,2000 年)。冰川覆盖面积的减少产生了几个深远的影响。首先,冰川萎缩导致河流流量净增加,通常发生在夏末,此时水源供应处于最低水平(Fountain 和 Tangborn,1985 年)。这些额外的水对生态系统(Hall 和 Fagre,2003 年)和人类用水需求(Tangborn,1980 年)都很重要。然而,如果冰川萎缩持续下去,对河流流量的净贡献将会减少,而对这些受益者的影响将是不利的。冰川萎缩也是当前海平面上升的一个重要因素(Meier,1984 年;Dyurgerov 和 Meier,2000 年)。其次,西海岸各州的许多冰川都位于层状火山上,持续的退缩将使河谷变得过于陡峭。这些山谷曾经被冰层支撑,现在很容易崩塌,为火山泥流创造了条件(Walder 和 Driedger,1994 年;O’Connor 等人,2001 年)。最后,冰川的减少或消失会降低或消除冰川活动,而冰川活动是影响景观演变的重要地貌过程,并改变高山地区的侵蚀率(Hallet 等人,1996 年)。由于
摘要:重力波(GWS)是子午线和上层平流层中子午倾覆循环的关键驱动因素之一。他们在气候模型中的表示遭受了不足的分辨率和对其参数化的有限约束。这种掩盖了对气候变化中中大气环流变化的评估。This study presents a comprehensive analysis of stratospheric GW activity above and downstream of the Andes from 1 to 15 August 2019, with special focus on GW representation ranging from an unprecedented kilometer- scale global forecast model (1.4 km ECMWF IFS), ground-based Rayleigh lidar (CORAL) observations, modern reanaly- sis (ERA5), to a coarse-resolution climate model (EMAC).与ERE5相比,发现Zonal GW动量(GWMF)的分辨垂直浮标(GWMF)的强度至少为2-2.5。与IFS中解决的GWMF相比,ERA5和EMAC的选址继续产生60 8 s的过度GWMF极点,从而在已解决的GWMF和参数化的GWMF之间产生明显的差异。在IFS和ERA5中对GW Pro Files的类似验证验证了相似的波结构。,即使在; 1公里的分辨率,IFS中的解析波弱于LIDAR观察到的波。此外,跨数据集的GWMF估计值表明,基于温度的代理基于线性GWS的中频近似,由于简化的GWMF和GW波长估计的数据高估了GWMF。总体而言,该分析为参数化验证提供了GWMF基准,并要求三维GW参数化,更好的上限处理和垂直分辨率随着模型中水平分辨率的增加而增加,以进行更现实的GW分析。
摘要 天气和气候预测主要受高维性、许多不同空间和时间尺度上的相互作用以及混沌动力学的影响。这使得该领域的许多问题变得相当复杂,而且尽管计算成本巨大,但最先进的数值模型仍不足以满足许多应用的需求。因此,使用人工智能等新兴技术来解决这些问题很有吸引力。我们表明,可以使用深度神经网络模拟高度简化的大气环流模型的完整动态,既能提供未来几天模型状态的良好预测,也能提供稳定的长期气候时间序列。这种方法也部分适用于更复杂和更现实的模型,但只能用于预测未来几天模型的天气,而不能用于创建气候运行。使用 50-100 年的数据来训练网络就足够了。可以将相同的神经网络方法与数值集合天气预报的奇异值分解相结合,以便使用神经网络生成概率集合预报。从更基本的层面上讲,我们表明,在简单的动态系统设置中,前馈神经网络推广到系统新区域的能力似乎存在局限性。这是由于网络的不同部分学习对系统的不同部分进行建模所致。相反的是,对于另一个简单的动态系统,这被证明不是一个问题,这让人怀疑在更复杂的模型背景下简单模型的结果的实用性。此外,我们表明神经网络在某种程度上能够“学习”缓慢变化的外部强迫对系统动力学的影响,但只有在给定足够广泛的强迫机制的情况下才能做到这一点。最后,我们提出了一种补充操作天气预报的方法。给定初始场和过去天气预报的误差,使用神经网络预测新预报的不确定性,仅给定新预报的初始场。
摘要。火星上南纬 8.8°、西经 270.9° 处有一片包含 11 个星形沙丘和早期星形沙丘的沙丘场。在南纬 59.4°、西经 343° 处的陨石坑中发现了线性沙丘的例子。虽然很少见,但在火星表面并非没有在双向和多向风况下形成的沙丘种类。这两个沙丘场的出现为火星风况和沙供应的性质提供了新的见解,线性沙丘似乎是通过改变以前横向的风成沉积物形成的,这表明当地风向最近发生了变化。星形沙丘地区的 11 个沙丘显示出从新月形沙丘到星形沙丘的逐渐变化,因为每个连续的沙丘都向上移动到山谷,进入更复杂的风况。星形沙丘证实了 N. Lancaster (1989, Progress in Physical Geography 13 , 67–91; 1989, Sedimentology 36 , 27–289) 的模型,即星形沙丘的形成是通过将横向沙丘投射到复杂的、受地形影响的风力条件中而实现的。星形沙丘上有黑色条纹,这证明沙丘在 1978 年海盗 1 号轨道器获取相关图像时或前后处于活跃状态。这里描述的星形沙丘和线性沙丘位于火星表面的不同区域。与地球上的大多数星形沙丘和线性沙丘不同,这两个火星沙丘都是孤立出现的;它们都不是主要沙海的一部分。先前发表的火星大气环流模型结果表明,线性沙丘场出现的区域应为双峰风况,而星形沙丘出现的区域应为单峰风况。星形沙丘可能是由于沙丘受地形限制而导致风况局部复杂化的结果。局部地形对风况的影响在线性沙丘场中也很明显,因为在线性沙丘附近有横向沙丘,它们的出现最好解释为风通过上风口壁的地形间隙汇集。
(提议人:Eloisa Di Sipio 博士、Antonio Galgaro 教授)引言 2018 年,欧盟 (EU) 提出了一项长期战略,旨在到 2050 年实现气候中性经济,将全球气温升幅控制在 2°C 以下。在这一框架中,替代能源和可再生能源在城市能源规划中的整合发挥着关键作用。在供暖和制冷领域,浅层地热能 (SGE) 的利用是化石燃料的一个重要替代品。事实上,人类对城市地区气候变化的影响是巨大的。城市化改变了土地的热特性,改变了地表的能量预算,改变了周围的大气环流特征,产生大量的人为废热,并导致城市环境系统的变化。城市化对热环境的影响通常被称为城市热岛 (UHI) 效应,其对地下温度 (T) 和环境的影响仍不太了解。多项研究证明,城市发展可能会使复合城市景观的地表温度显著升高(2-5°C),因为建筑物、沥青和混凝土表面的年平均地表温度高于草地和裸露土壤。现有技术地下水,尤其是浅层地下水,从地表获得或损失热量,而地表的年平均温度受气候变化和土地利用的控制。在这方面,必须考虑地表空气 (SAT)、地下 (SST)、地表 (GST) 和地下水 (GWT) 温度变化的长期趋势和季节性循环。随着地球表面的 T 波动向下扩散,其幅度随深度呈指数减小。地下引起的大规模热异常称为地下城市热岛 (SUHI)。钻孔 T 剖面通过特征趋势揭示了累积的能量,其中城市加热导致 T 向地表增长。异常的城市 GST 异常既向上传播到大气中,又向下传播到地下。随着全球城市化以前所未有的速度增长,我们迫切需要提高对 SUHI 及其环境、社会和经济后果的认识。随着人们对地热利用的兴趣日益浓厚,储存在城市含水层中的多余热量被认为是空间供暖和制冷的有吸引力的热库。这对于高度城市化的城市来说确实很重要,因为与周边乡村相比,这些城市的供暖需求更高。高效、可持续地开采如此大量的能源不仅可以满足城市地区的部分能源需求,而且还可以在减缓城市变暖方面发挥积极作用,因为可以减少温室气体排放。目标“城市地热能潜力”的总体目标:“城市规模浅层城市地下资源利用 (GEO-URB)”项目旨在确定帕多瓦城市地区的地热能潜力。将区分影响 SUHI 的长期自然热量成分和人为热量贡献。具体目标是