猛击和进程是使用视觉准确定位车辆的主要方法。SLAM基准[6]使3D大满贯用于自动驾驶。与基于图像的SLAM [11]相比,基于激光雷达的SLAM具有更高的准确性,对照明条件的敏感性降低以及直接获取3D数据的能力。基于激光雷达的SLAM是机器人技术的重要研究主题。第一个值得注意的框架Google制图师[7]是针对2D大满贯开发的。随后,2D LiDAR SLAM已在室内映射中广泛使用,其中包括Navvis M3手推车[2]之类的示例。从2D到3D大满贯,使用两种主要策略来匹配连续的LiDAR点云:基于迭代的最接近点(ICP)的方法[5,14,16]和基于特征的方法[13,17]。深
摘要 - 多机器人同时本地化和映射(SLAM)使机器人团队通过依靠环境的共同地图来实现协调的任务。通过对机器人观测的集中处理来构建地图是不可取的,因为它会产生单个失败点并重新存在预先存在的基础架构和显着的通信吞吐量。本文将多机器人对象猛击制定为通信图上的变异推理问题,受不同机器人主导的对象估计的共识约束。为了解决该问题,我们开发了一种分布式的镜面下降算法,并在通信机器人之间实施了正则化的共识。使用算法中的高斯分布,我们还为多机器人对象大满贯提供了分布式多状态约束Kalman滤波器(MSCKF)。对真实和模拟数据的实验表明,与单个机器人大满贯相比,我们的方法改善了轨迹和对象估计,同时与集中的多机器人大满贯相比,在大型机器人团队中实现更好的缩放。
除了环境感知传感器(例如摄像机,雷达等)。在自动驾驶系统中,人们可以感知车辆的外部环境,实际上,也有一个感知传感器在系统中默默地专用,即定位模块。本文探讨了自动驾驶汽车的自动巷改变行为预测和环境感知的猛烈(同时定位和映射)技术的应用。它讨论了传统定位方法的局限性,引入了大满贯技术,并将激光雷达的大满贯与视觉大满贯进行了比较。来自特斯拉,Waymo和Mobileye等公司的现实世界实例展示了AI驱动技术,传感器融合和在自动驾驶系统中的集成。随后,纸张研究了SLAM算法,传感器技术的细节,以及自动车道变化在驾驶安全性和效率方面的重要性。它突出显示了特斯拉对其自动驾驶系统的最新更新,该系统结合了使用SLAM技术的自动车道更改功能。本文结论是强调SLAM在实现自动驾驶汽车的准确环境感知,定位和决策中的关键作用,最终增强了安全性和驾驶经验。
自动移动机器人在交付,制造,耕作,采矿和太空探索的自动化中起着重要作用。尽管这些机器人在传统上依靠其与GNSS/INS系统的本地化[1],但在室内,室内,屋顶或茂密植被的区域,在发生信号损失的情况下,会出现挑战。为了克服这一限制,已经提出了同时定位和映射(SLAM)[2]方法。猛击通常将其分为光检测和范围(LIDAR)大满贯和视觉猛击,具体取决于所用的主要传感器。LIDAR SLAM在涉及敏捷运动和复杂结构化环境的场景中具有很高的精度和鲁棒性,这是由于其能力直接使用多个射线直接测量对象和传感器之间的距离[3]。但是,由于LiDar SLAM通过匹配每种结构扫描来执行定位,LIDAR的大满贯可以在无结构的场景中退化,例如隧道,庞大的平面和走廊[4]。另一方面,视觉猛击,利用RGB图像的纹理信息可以在无结构环境中起作用,因为它依赖基于纹理的特征,即使在缺乏明确的结构元素的场景中,也可以提取这些特征[5]。然而,视觉大满贯的规模估计有弱点,并且可以在照明条件下快速变化。为了解决LiDAR和Visual Slam的局限性,已经提出了各种LiDAR视觉大满贯方法,这些方法同时整合了LiDar和Visual Sensor的信息[6-8]。这些方法可以有效地处理结构和,因为这些方法大多数都依赖于松散耦合的方式(系统间融合)[6,7],这两个系统中的故障都会导致总体猛击失败。为了解决松散耦合方式的弱点,已经提出了紧密耦合的方法(功能间融合)[8]。
设计/方法论/方法:本研究介绍了Slam-Ramu,这是一个终生的大满贯系统,通过提供精确,一致的重新定位和自主地图更新来解决这些挑战。在映射过程中,使用迭代误差状态kalman滤镜获得局部探测器,而后端环检测和全局姿势图优化用于准确的轨迹校正。此外,还合并了一个快速点云分割模块,以牢固地区分环境中的地板,墙壁和屋顶。然后使用分段点云来生成2.5D网格图,特别强调地板检测以滤波先前的映射并消除动态伪像。在定位过程中,设计了一种初始姿势比对方法,该方法将2D分支和结合搜索与3D迭代最接近点(ICP)注册相结合。此方法即使在具有相似特征的场景中也可以确保高精度。随后,使用先前地图上的分段点云执行扫描到地图注册。该系统还包括一个地图更新模块,该模块考虑了历史点云分割结果。它有选择地合并或排除新的点云数据,以确保地图中真实环境的一致反射。
摘要尽管有望在视觉和机器人社区中进行大满贯研究,这些研究从根本上维持了智能无人系统的自主权,但视觉挑战仍然严重威胁其强大的操作。现有的大满贯方法通常集中在特定的挑战上,并通过复杂的增强或多模式融合来解决问题。然而,它们基本上仅限于特定场景,并具有非量化的理解和对挑战的认识,从而导致性能下降,并且具有较差的概括,并且(或)具有冗余机制的冗余计算。为了推动Visual Slam的边界,我们提出了一个完全计算可靠的评估模块,称为CEMS(SLAM的挑战评估模块),以基于明确的定义和系统分析,以进行一般视觉感知。它将各种挑战分解为几个共同方面,并使用相应的指标评估退化。广泛的实验证明了我们的可行性和表现不佳。与注释地面真相相比,所提出的模块的一致性为88.298%,与SLAM跟踪性能相比,强大的相关性为0.879。此外,我们根据CEMS显示了具有更好性能的CEM的原型大满贯,并且第一个全面的CET(挑战评估表)(EUROC,KITTI等)对各种挑战的客观和公平评估。我们使其在线提供,从而在我们的网站上受益。
Kudan Inc. (headquarters in Shibuya-ku, Tokyo; CEO Daiu Ko) is thrilled to announce that Fox Sports Productions, LLC (headquarters in Los Angeles, USA; CEO Eric Shanks, hereafter “FOX Sports”) has decided to commercially launch its augmented reality (AR) broadcasts robot camera to redefine AR experiences in live sports broadcasting.这项合作将在即将到来的超级碗Lix上首次亮相,Kudan的专利高频3D LIDAR大满贯跟踪软件将为下一代AR增强功能提供动力,为沉浸式体育娱乐活动提供前所未有的观看体验。1。产品发布和协作的详细信息Kudan的实时大满贯技术可以实现超专业的3D空间跟踪,而无需依赖外部定位系统,从而在现场体育中为AR解释了新的可能性。通过将这项技术集成到SkyCam的计算机控制,稳定,有线电视摄像机系统和Fox Sports的广播工作流程中,Kudan将赋予实时AR图形和视觉增强功能,这些图形和视觉增强功能无缝固定在游戏动力学上。
摘要 - 无人驾驶汽车(UAV)对关键应用(例如搜索和救援操作)具有巨大的潜力,在搜索和救援行动中,对室内环境的准确感知至关重要。然而,本地化,3D重建和语义细分的同时融合呈现出一个明显的障碍,尤其是在配备有限的功率和计算资源的UAV背景下。本文提出了一种新的方法,可以解决无人机操作中语义信息提取和利用方面的挑战。我们的系统集成了最先进的视觉大满贯,以估计后端的全面的6多姿势和高级对象分割方法。为了提高框架的计算和存储效率,我们采用了简化的基于体素的3D地图表示 - OctOmap来构建工作系统。此外,融合算法是不合适的,可以从前端大满贯任务和相应点获得每个帧的语义信息。通过利用语义信息,我们的框架增强了无人机在室内空间中感知和导航的能力,从而解决了姿势估计准确性和降低不确定性的挑战。通过凉亭模拟,我们验证了我们提出的系统的功效,并将我们的方法成功地嵌入了用于现实世界应用的Jetson Xavier AGX单元中。索引项 - 语义映射,S3M,无人机,ROS,SLAM。