千克仍以实物来定义,即 1889 年第一届 CGPM 批准的国际千克原器。它有三个主要缺点:仅在一个地方可用,在物理质量方面不可持续,并且由于它基于工件而不具有通用性。质量单位的定义最早可能在 2011 年发生改变,并且将基于自然基本常数的固定值。因此,基于真实的自然不变性重新定义千克的可能性已经讨论了大约 30 年。在此背景下,法国计量部门自 2002 年以来着手实施瓦特天平实验,其目的是将千克与普朗克常数联系起来。采用以基本或原子物理常数为基础的千克新定义时,必须考虑其传播,同时避免对认可实验室和大多数用户的实践造成任何干扰。但这必然会对国家计量实验室使用的传递标准产生影响。
2018年对于计量来说无疑是历史性的一年! 11 月第 26 届国际计量大会 (CGPM) 期间记录的国际单位制 (SI) 单位的重新定义标志着测量界的一个转折点:所有 SI 单位,特别是国际单位制单位的非物质化千克,其定义自 1889 年以来就没有改变。LNE 和法国国家计量网络的研究人员多年来的工作为这一转折点做出了巨大贡献,我特别想到我们的贡献得益于我们的瓦特天平(世界上三个、欧洲唯一的一个),千克的非物质化,以及我们对开尔文新定义的贡献,我们的工作使确定玻尔兹曼常数(k )在全球最佳水平。这一历史性事件也是一个机会,可以强调计量学对我们的社会、对我们同胞的安全、对我们企业的竞争力的重大贡献,并将我们的机构定位为国家和国际水平研究的关键参与者。
(D) 使用适当的工具,如电流表、天平、弹道车或同等设备、电池、卡尺、摄氏温度计、消耗性化学品、碰撞设备、计算机和建模软件、恒速车、数据采集探头和软件、带电源的放电管(H、He、Ne、Ar)、动力学和力演示设备、验电器、静电发生器、静电套件、摩擦块、绘图技术、手持式视觉分光镜、加热板、铁屑、激光笔、灯泡、宏量计、磁铁、磁罗盘、质量装置、公制尺、米尺、模型和图表、运动探测器、万用表、光学台、光学套件、光学透镜、摆锤、光电门、平面镜、偏光膜、棱镜、量角器、电阻器、带波发生器的波纹槽、绳子或细绳、科学计算器、简单机械、弹簧、弹簧、弹簧秤、标准实验室玻璃器皿,秒表、开关、音叉、计时装置、轨迹仪、电压表、波动绳、电线或其他能产生相同结果的设备和材料;
摘要 近年来,太空计划复苏,主要得益于私营企业日益增长的兴趣,但同时也出现了多个层面对人类太空活动的强烈抵制。这在一定程度上是更广泛的反启蒙时代精神的体现,在西方其他公共生活领域中也可以发现,部分是对私营部门广泛参与的反应。虽然太空怀疑论仍未主导太空问题的讨论,但它却是一个令人惊讶的广泛而分散的现象,汇集了从亲启蒙自由主义者到狂热的“深层生态”活动家、哲学悲观主义者到各种反全球化主义者等各种思想流派。然而,到目前为止,几乎没有人积极反对这种文化趋势。虽然太空工程师和企业家“照常”开展业务,但这种文化氛围中隐藏着大量风险,尤其是如果人们采用多次重复(但很少得到充分理解)的格言“政治是文化的下游”。本文将回顾这一“大帐篷”文化运动中的主流思想,向太空怀疑论者提供合理的反驳意见,并概述为平衡天平需要开展的重要文化和公众宣传工作。
大多数人,包括物理学家,可能都不知道实验室里的电压表或手机里的电池是如何校准的。这两项活动以及许多其他活动都主要依赖于基于国际单位制的电学单位的成功传播。电学单位的标准有着悠久的历史,可以追溯到基础实验——例如安培定律的测试。然而,今天的电学标准正受到基于量子定律和设备的现代工作的挑战,而这些定律和设备在 1960 年国际单位制建立时并不存在。理论上,电学单位都是基于两根载流导线之间的力。实际上,目前的电学单位系统基于两个不方便且具有挑战性的物理实验。电流单位由现代版的安培实验定义,该实验使用一种称为瓦特天平的设备(见图 1)。电容单位由可计算电容器实验定义,在该实验中,一个大型铜圆柱体在真空室中移过其他圆柱体。然而,在实际操作中,大多数电气单位(特别是电压和电阻)的校准可以追溯到反映量子物理的固态设备,而不是经典的库仑或安培定律。基于约瑟夫森电压 (JV) 的量子标准
大多数人,包括物理学家,可能都不知道实验室里的电压表或手机里的电池是如何校准的。这两项活动以及许多其他活动都主要依赖于基于国际单位制的电学单位的成功传播。电学单位的标准有着悠久的历史,可以追溯到基础实验——例如安培定律的测试。然而,今天的电学标准正受到基于量子定律和设备的现代工作的挑战,而这些定律和设备在 1960 年国际单位制建立时并不存在。理论上,电学单位都是基于两根载流导线之间的力。实际上,目前的电学单位系统基于两个不方便且具有挑战性的物理实验。电流单位由现代版的安培实验定义,该实验使用一种称为瓦特天平的设备(见图 1)。电容单位由可计算电容器实验定义,在该实验中,一个大型铜圆柱体在真空室中移过其他圆柱体。然而,在实际操作中,大多数电气单位(特别是电压和电阻)的校准可以追溯到反映量子物理的固态设备,而不是经典的库仑或安培定律。基于约瑟夫森电压 (JV) 的量子标准
目前对可降解亚胺基聚合物半导体分子设计原理的理解仅限于半结晶聚合物形态。在此,我们设计并合成了一类基于吲哚并二噻吩 (IDT) 单元的新型可降解纳米晶体半导体聚合物,所用方法比常用的 Stille 缩聚反应毒性更小。由于可降解 IDT 基聚合物薄膜缺乏长程有序性,我们表明,在保持与可降解半结晶二酮吡咯并吡咯 (DPP) 基对应物相似的电子性能的同时,可以实现增强的拉伸性。通过紫外-可见光谱、凝胶渗透色谱、核磁共振光谱和石英晶体微天平进行的降解研究表明,IDT 基聚合物的降解速度比半结晶 DPP 基聚合物快几个数量级(在溶液中数小时内,在薄膜中一周内)。此外,与半结晶 DPP 基聚合物相比,IDT 基聚合物可以在更温和的酸性条件(0.1 M HCl)下降解,这类似于人体内的酸性环境,并且允许从合成到降解的条件更加环保。我们的工作加强了我们对聚合物半导体结构-降解特性关系的理解,并为可触发、按需降解的瞬态电子器件铺平了道路。
在这里,我们探讨了探针分子(甲苯)在四种流行结构的 MOF 薄膜中的质量转移:HKUST-1、ZIF-8、UiO-66 和 UiO-67。HKUST 代表香港科技大学,ZIF 代表沸石咪唑酯框架,UiO 代表奥斯陆大学。使用石英晶体微天平 (QCM) 量化客体的吸附和扩散。将 MOF 薄膜暴露在普通环境空气中,并表征其对吸收性能的影响。虽然所有 MOF 薄膜的晶体度都是稳定的,如 X 射线衍射 (XRD) 所示,但我们表明,HKUST-1 和 UiO-67 中甲苯的吸附量和速率常数在暴露于环境空气后严重下降。另一方面,UiO-66 和 ZIF-8 是稳定的,吸附和扩散性能不受样品与实验室空气长期接触的影响。为了揭示缺陷并阐明降解机理,我们使用红外光谱,并将导致传质阻力增加的缺陷与之前描述的缺陷联系起来。对于 UiO-67,实验补充了使用不同客体分子以及 MOF 粉末的吸收实验,结果显示类似的降解和表面屏障演变。在 UiO-67 MOF 中发现的此类传质表面屏障尚未在 UiO 型 MOF 中出现。研究表明,尽管材料的结晶度
将乙二醇 (EG) 侧链引入共轭聚合物主链是设计有机混合离子电子导体 (OMIEC) 的成熟合成策略。然而,薄膜膨胀对混合导电性能的影响尚未确定,特别是对于电子传输 (n 型) OMIEC。本文,作者研究了支链 EG 链长度对基于萘-1,4,5,8-四羧酸二酰亚胺-联噻吩主链的 n 型 OMIEC 混合电荷传输的影响。原子力显微镜 (AFM)、掠入射广角 X 射线散射 (GIWAXS) 和扫描隧道显微镜 (STM) 用于确定干燥条件下共同主链薄膜之间的相似性。带耗散监测的电化学石英晶体微天平 (EQCM-D) 和原位 GIWAXS 测量表明,在电化学掺杂过程中,薄膜膨胀特性和微观结构会发生明显变化,具体取决于侧链长度。研究发现,即使在与水性电解质接触时晶粒含量会损失,薄膜仍能有效地传输电荷,而高水含量会损害 OMIEC 薄膜内的电子互连性。这些结果强调了控制薄膜吸水量以阻止 n 型电化学装置中的电荷传输的重要性。
海战环境正在迅速变化。美国海军正在适应变化,继续保持其在蓝水领域的主导地位,同时建设棕水能力。无人系统,如无人空中无人机,在应对新的战场挑战中发挥着关键作用。无人水下航行器 (UUV) 正在成为海军的海上版空军无人机。与传统的舰载作战相比,UUV 代表了一种低端颠覆性技术,它能够承担越来越复杂的角色,打破战场熵的天平。它们可以改善任务结果,而成本仅为传统作战的一小部分。此外,麻省理工学院目前正在开发的长期水下电源将使 UUV 的射程和作战续航能力提高一个数量级。安装这些系统不仅可以让 UUV 完成新的、以前不可能完成的任务,还可以大幅降低成本。我探讨了 UUV 和长期水下电源对海军及其未来作战的财务和战略影响。通过研究当前的海军行动以及 UUV 可以补充或取代潜水员和船只的方式,我确定了使用 UUV 技术降低人员生命风险、降低成本和利用技术学习曲线的方法。我得出的结论是,随着 UUV 的广泛使用,可以立即节省大量成本,而目前的研究投资水平与 UUV 项目的风险和回报相比是不足的。