•东部米德兰兹室(EMC)季度经济调查(QES)在2022年5月和6月进行,表明德比郡在2022年第二季度的经济表现速度放缓。更广泛的东部中部地区也看到了第二季度的放缓,尽管不像全县那样重要。在2022年第二季度初期的经济状况轻微缓解经济状况之后,经济压力的更新了。与供应链和人员有关的不确定性在满足大流行后对商品和服务的不断增长以及与英国离开欧盟的交易条件的变化方面相关的不确定性,对乌克兰冲突的经济影响加剧了。这给公司带来了进一步的供应链困难,并为更广泛的生活危机造成了贡献。
通过由第七框架计划 (FP7-ENV- 2012 编号 308429) 资助的 WeSenseIt 研究项目 (http://staffwww.dcs.shef.ac.uk/people/F.Ciravegna/wsi-site/wesenseit.eu/index.html,最后访问时间:2020 年 12 月 2 日),我们与意大利北部的上亚得里亚海盆地管理局合作制定了洪水风险管理合作计划。该合作计划的目的是收集公民在实地的观察结果,并在洪水事件发生前和期间更广泛、更迅速地了解事态发展。该合作计划涉及许多利益相关者,他们关注巴奇廖内河流域的水资源管理和使用以及与水有关的危害。主要参与者包括地方市政当局、区域和地方民防机构、环境机构和灌溉当局。阿尔托阿德里亚蒂科水务局 (AAWA) 为受过严格训练的公民观察员群体(即民防志愿者)提供了便利,他们作为志愿者活动的一部分进行观察(即使用带有二维码的标尺测量水位并报告水道障碍物;见图 1)。项目期间还从意大利红十字会、国家阿尔卑斯山骑兵协会、意大利陆军警察和其他民防组织招募了其他志愿者,共有 200 多名志愿者参加了 CO 试点项目。为志愿者组织了培训课程,以传播和解释智能手机应用程序和电子协作平台的使用,这些应用程序和平台是作为 WeSenseIt 项目的一部分开发的。除了低成本的传感设备外,CO 还使用了物理传感器的数据,这些传感器由 AAWA 与区域土壤保护部、环境保护局和民防局合作运营,包括:三个声纳传感器(河流水位)、四个气象站(风速和风向、降水量、气温和湿度)和五个土壤湿度传感器。传感器的组合可视化(包括威尼斯环境局现有的传感器)可在在线电子协作平台上获得。在 WeSenseIt 项目期间,研究了众包数据对水文建模的价值(Mazzoleni 等人,2017 年、2018 年),发现它可以补充传统的传感器网络。该试点后来被欧洲共同体采纳为应用 2007/60/EC 指令的“良好实践”示例。在 WeSenseIt 获得积极经验后,欧洲共同体提供了资金来开发洪水风险 CO
图1。艾伦脑观测神经质体工作流程。管道由8个主要步骤组成:(a)植入自定义头部框架并在视觉皮层上插入玻璃窗口的外科手术程序; (b)内在信号成像以识别皮质视觉区域; (c)小鼠的行为训练; (d)用塑料窗口替换玻璃窗,其中包含孔,用于插入探针; (e)行为的体内细胞外电生理学实验; (f)去除探针和第1天数据的处理; (g)第二次体内细胞外电生理学实验; (h)使用光投影层析成像(OPT)回收记录位置。每行中描述了每个步骤的详细信息和大约持续时间。在每行结束时是参考,读者可以为每个步骤找到更多详细信息。
一旦小鼠在任务中受过良好的训练,它们会过渡到执行任务,同时使用2光子显微镜成像,以同时测量神经活动和行为。在实验的成像部分中,小鼠在训练过程中查看的八个自然场景图像以及在单独的课程中以前从未见过的八个图像进行了任务。这允许评估新颖性对刺激和行为信息的神经编码的影响。小鼠在成像阶段还进行了被动观看会话,在会议前将小鼠给出了每日水(因此被满足),并通过舔嘴撤回的任务刺激,因此他们无法获得水的回报。最后,仅在成像会话中,刺激被省略了5%的概率,破坏了闪烁的图像呈现的预期节奏。刺激变化和紧接变化之前的刺激从未被省略。
摘要。我们描述了单个光圈大型宇宙研究(Saltus)任务的空间天文台结构和任务设计,国家航空航天及空间管理局(NASA)天体物理学探测器资源管理器的概念。Saltus将使用直径<45 K的主要反射器(M1)来解决关键的远红外科学,并将为行星,太阳系和银河进化研究和宇宙起源提供前所未有的光谱灵敏度。从诺斯罗普·格鲁曼(Northrop Grumman)广泛的NASA任务遗产中绘制,天文台飞行系统基于Leostar-3航天器平台,以携带盐盐有效载荷。有效载荷由通货膨胀控制系统,阳光模块(SM),冷校正器模块(CCM),温暖仪器电子模块和Primary反射器模块(PRM)组成。14-m M1是一种由两层阳光射线(每层约1000 m 2)冷却的轴膜片放射线。CCM校正了M1的残留差,并将聚焦的光束传递给两种仪器 - 高分辨率接收器(HIRX)和Safari-lite。CCM和PRM居住在基于桁架的复合甲板上,该甲板还为态度控制系统提供了一个平台。Saltus 5年的任务寿命是由两个可消耗的档案馆驱动的:推进剂系统和通货膨胀控制系统。核心界面模块(CIM)是一种多面复合桁架结构,提供了一个载荷路径,具有高刚度,机械附件和有效载荷和航天器之间的热分离。SM附着CIM外,其后端直接集成到总线上。航天器在太阳线方面保持了M1的态度的态度,以促进<45 K的热环境。盐盐将驻留在阳光下 - 地球光环2轨道,最大地球倾斜范围为180万公里,从而减少了轨道转移Delta-V。瞬时视野在黄道杆周围提供了两个连续的20度查看区域,从而在6个月内实现了全天空覆盖率。
1 Swift 仪器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 19 6 BAT 频谱。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 23 7 XRT PSF。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 26 8 Cas A 的 XRT 谱。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . ... 34 13 快速数据中心数据流 . ...
科学仪器、天文台和传感器系统 TA 8 路线图利用了 2010 年空间技术路线图和 2005 年 NASA 高级规划和集成办公室 (APIO) 评估、高级望远镜和天文台以及科学仪器和传感器中的先前路线图活动。TA 8 的技术允许收集有关地球大气层、太空和其他行星的信息。TA 8 技术分为遥感仪器和传感器、天文台和现场仪器和传感器。遥感仪器和传感器包括用于测量感兴趣的远程目标的光谱、空间和其他可观察特性的组件、传感器和仪器,既有被动的,也有主动的,例如通过基于激光和雷达的方法。天文台包括用于收集、集中或传输光子的下一代望远镜系统的技术。现场仪器和传感器包括用于探测空间环境中的场、波和粒子以及用于表征行星外大气层、大气层和表面的组件、传感器、仪器和采样技术。本文件中确定的技术需求和挑战可追溯到最新的地球、行星、天体物理学和太阳物理学十年调查报告推荐的特定 NASA 任务(“拉动技术”),但有些允许新的科学能力和任务概念(“推动技术”)。
利用分布式孔径的空间干涉测量法是天文学和天体物理学任务中一项重要的技术。在该技术中,来自不同孔径的电磁波(波长从 100 米(无线电)到 100 纳米(光学))观测同一目标时会叠加在一起,以产生干涉并提取信息。干涉仪的分辨率会随着卫星间距离(基线)的增加而提高。地面光学干涉测量法在凯克天文台(美国夏威夷)、欧洲南方天文台(智利)、大型双筒望远镜天文台(美国亚利桑那州)、威尔逊山天文台(美国加利福尼亚州)、洛厄尔天文台(美国亚利桑那州)等地进行。44 已经提出了许多基于空间的光学干涉测量任务,但迄今为止尚未实现:
在全球不同的海洋和陆地环境中,已经报道了抽象的Zetaproteobacteria。它们在富含海洋铁的微生物垫中起着至关重要的作用,作为其自养主要生产者之一,氧化Fe(II),并产生具有不同形态的Fe-氧还氧化物。在这里,我们通过使用Zetaproteobacte Rial操作分类学单元(Zetaotu)分类,研究和比较了来自幸运罢工水热场六个不同地点的富含铁的微生物垫的Zetaproteobacterial社区。我们首次报告了这些富含铁的微生物垫的Zetaproteobacterial核心微生物组,该垫子由四个是国际化的Zetaotus组成,对于垫子的发展至关重要。对位点之间不同Zetaotus的存在和丰度的研究揭示了两个簇,这与它们开发的底层的岩性和渗透性有关。簇1的zetaproteobacterial群落是渗透不良的底层的特征,几乎没有弥漫性排气的证据,而群集2的斑点底层则在水热板或沉积物上形成,允许扩散水热流体的渗透和流出。此外,还确定了两个Newzetaotus 1和2,这可能分别是人类铁的特征和未经证实的玄武岩。我们还报告了某些Zetaotus的丰度与氧化铁形态的含量之间的显着相关性,这表明它们的形成可能是分类学和/或环境驱动的。我们确定了我们命名为“珊瑚”的Fe(III) - 氧氧化物的新形态。总体而言,我们的工作通过提供来自大西洋的其他数据来帮助对该细菌类别的生物地理学的知识,这是Zetaproteobacterial多样性的较少研究的海洋。