可能的未来并研究人员,数据,机器和环境的纠缠。艺术家在CámaraLeret,Adam Harvey,Keziah Macneill和Alex Fefegha为其发展做出了贡献,并在ARS Electrica Electrica的新型Real Pavilion在ARS Electrica 2022在Ars Electria,在AROULIA的ARPATION,在AROUTIA的活动中,陪伴与之互动的艺术品在AROULIA,以及一个研究人员参与研究Hub的Ars Electrica converory the New Real Pavilion上首映的艺术品。新的真实天文台生成的AI平台2022年平台为艺术家打开数据和算法,以探索和发现艺术家,并能够反思人类共同创作的新颖概念。它集成了本地化的气候预测模型,并由一系列可用的AI工具和流程提供动力,这些工具和过程已集成,以允许用户在Visual(Image)或符号(文本)语言中构建和探索感兴趣的维度。平台在生成过程中为艺术家代理提供了代理商,同时又可以根据用户自己的数据探索ML模型。InésCámaraleret的覆盖层,2022年覆盖层探索了自然局部表示的构建和人为性。作品引用了迪斯尼的“脱离绿色”:一种颜色,该颜色设计为掩盖主题公园中的难看但必要的物体。cámaraleret与AI处理引擎合作,对绿色和建筑环境的图像进行了微调,以揭示当地社区的绿色色调。亚当·哈维(Adam Harvey)的循环扩散,2022年,亚当·哈维(Adam Harvey)在这项新作品中反映了生成性AI技术的危险和可能性及其与能源和宣传的关系。多组分艺术品功能:一个数字界面,可让任何人在地球上任何地方找到其本地绿色;传统的集市骑行中的重新涂层物体;以及一部多渠道电影,其中当地的色调由西班牙的最后一个活着的彩色家制作,并被当地社区以其物质形式吸收。图像的集合,标题为“圆形扩散”,引用了新开发的AI扩散算法,它们可以自动产生令人敬畏的图像的能力以及推断的圆形逻辑。AI通常被认为是具有无限解决问题能力的充满希望的技术。但是新解决方案可以创建新问题。生成的AI容易幻觉,当应用于气候变化时,会产生以科学语言掩盖的非科学输出。此外,使用生成的AI解决气候变化可以扩大现有问题:减轻气候变化意味着减少能量,但是开发AI需要大量它。Keziah MacNeill的摄影提示,2022年的摄影提示在算法时代探索了摄影图像的未来,并带来了一个投机性的未来,其中自然景观的特征,例如苏格兰湖中的水体特征是唯一的模拟镜头形式。麦克尼尔(MacNeill)调整到神经网络的操作中,探索算法图像制作以及在气候紧急情况下进行调查和查看土地的新方法。所展示的工作带来了虚构的未来,在该未来中,苏格兰湖成为一个地点,可以体验数字和雕塑界面中水从水中浮出水面的慢赠与。新的Real的新真实馆和研究中心,2022年,Artworks和平台的演示是由新的Real Pavilion的弹出式研究中心进行了背景。ARS Electronica 2022的访问者被邀请到艺术家,策展人和科学家参加演讲和旅行,以在展览和艺术品的主题上进行对话,并在展览空间中引起的反馈和洞察力的讲习班和印刷卡。
(1)评估基金会、美国国家航空航天局和能源部天文学和天体物理学项目的协调情况,并提出建议;(2)评估基金会、美国国家航空航天局和能源部活动的现状,并就这些活动与美国国家研究委员会 2021 年题为“2020 年代天文学和天体物理学发现之路”的报告中所载建议以及美国国家研究委员会后续类似报告中所载建议的关系提出建议;(3)不迟于每年 3 月 15 日向美国国家科学基金会主任、美国国家航空航天局局长、能源部长、众议院科学委员会、美国参议院商务、科学和运输委员会以及美国参议院卫生、劳工和养老金委员会提交一份关于咨询委员会根据第(1)和(2)款作出的调查结果和建议的报告。
2024 年 2 月 24 日至 25 日,不同年龄段的 iAstronomers 齐聚 iAstronomer 俱乐部全国科学日活动,庆祝全国科学日。全国科学日是为了纪念印度物理学家 CV 拉曼爵士于 1928 年 2 月 28 日发现拉曼效应。这一重大发现标志着科学史上的关键时刻,并为印度科学研究带来了国际认可。拉曼效应是指光被分子散射的现象,导致光线偏离其原始路径。CV 拉曼爵士在这一领域的开创性工作不仅为光的行为提供了宝贵的见解,而且为光谱学领域奠定了基础,光谱学在化学、物理、生物和材料科学等各个科学学科中都有广泛的应用。从天文美食秀到模型制作和科学独白,iAstronomers 参与了众多充满乐趣的活动,展示了他们对天文学和科学的热情。
Ÿ Pankaj Jain,主任(雪城大学博士):天体物理学和宇宙学、射电天文学、宇宙射线、X 射线天文学Ÿ Ishan Sharma(康奈尔大学博士):行星科学、粒状小行星;力学、应用数学Ÿ Amitesh Omar(班加罗尔 RRI;JNU 博士):星系天体物理学、仪器、光学和射电天文学Ÿ Sharvari Nadkarni-Ghosh(康奈尔大学博士):理论宇宙学、行星科学、非线性动力学Ÿ Kunal P. Mooley(加州理工学院、国家射电天文台博士):天体物理瞬变、喷流、致密物体、银河系中心、宇宙中的生命。 Ÿ Prashant Pathak(博士,综合研讨大学):系外行星的特征:直接成像、透射光谱。自适应光学和波前控制技术。地面和太空光学及红外仪器 Ÿ Kartick C. Sarkar(博士,印度科学研究所和拉曼研究所):星系的形成和演化、星际介质、天体流体动力学、银河反馈、辐射传输 Ÿ Deepak Dhingra(博士,布朗大学):行星遥感和地质学 Ÿ JS Yadav(博士,库鲁克谢特拉大学):X 射线天文学、空间探测器和仪器、宇宙射线 Ÿ Avinash Deshpande(博士,印度理工学院孟买分校/RRI):射电天文学、脉冲星、射电瞬变、星际介质、仪器和信号处理
在全球不同的海洋和陆地环境中,已经报道了抽象的Zetaproteobacteria。它们在富含海洋铁的微生物垫中起着至关重要的作用,作为其自养主要生产者之一,氧化Fe(II),并产生具有不同形态的Fe-氧还氧化物。在这里,我们通过使用Zetaproteobacte Rial操作分类学单元(Zetaotu)分类,研究和比较了来自幸运罢工水热场六个不同地点的富含铁的微生物垫的Zetaproteobacterial社区。我们首次报告了这些富含铁的微生物垫的Zetaproteobacterial核心微生物组,该垫子由四个是国际化的Zetaotus组成,对于垫子的发展至关重要。对位点之间不同Zetaotus的存在和丰度的研究揭示了两个簇,这与它们开发的底层的岩性和渗透性有关。簇1的zetaproteobacterial群落是渗透不良的底层的特征,几乎没有弥漫性排气的证据,而群集2的斑点底层则在水热板或沉积物上形成,允许扩散水热流体的渗透和流出。此外,还确定了两个Newzetaotus 1和2,这可能分别是人类铁的特征和未经证实的玄武岩。我们还报告了某些Zetaotus的丰度与氧化铁形态的含量之间的显着相关性,这表明它们的形成可能是分类学和/或环境驱动的。我们确定了我们命名为“珊瑚”的Fe(III) - 氧氧化物的新形态。总体而言,我们的工作通过提供来自大西洋的其他数据来帮助对该细菌类别的生物地理学的知识,这是Zetaproteobacterial多样性的较少研究的海洋。
所有作者都在该项目中发挥了作用,并教会了我很多,我非常感谢。此外,我四年级的研究项目共同服务员塞巴斯蒂安·法布罗(Sebastien Fabbro)和迈克·哈德森(Mike Hudson)为我的演讲和报告提供了非常宝贵的指导。
依赖于光学读出场的传感和计量平台中,最小可分辨信号越来越受到标准量子极限 (SQL) 的限制,而标准量子极限由光子散粒噪声决定。因此,散粒噪声降低技术对于下一代传感器的开发至关重要,这些传感器可用于从土木工程到生物化学等各种应用,以及用于能够分辨以前被量子噪声所掩盖的材料特性的新型显微镜平台。本次演讲展示了使用双模压缩光进行亚散粒噪声限制量子生物传感方面取得的一些重大进展,并重点介绍了机器学习算法的实现,该算法用于恢复量子信息,否则这些信息将被噪声所掩盖,这些信息位于查塔努加市中心的世界上第一个软件可编程量子网络基础设施中。
在天文学/天体物理学中,研究可能在只有少数人的小组内进行,也可能在涉及一千多人的大型联盟内进行,或者介于两者之间。大型联盟通常以特定的观测设施为中心。 大型联盟处理的整体研究主题通常很广泛,可能包括在较小的子单位(科学工作组)内进行的多个特定研究课题。这仍然可以为个别科学家定义自己独特的项目留下充足的空间。 研究问题大多是基础/好奇心驱动的,但处理大型数据集、空间技术、光学/探测器开发和信号处理都有增值渠道。天文学/天体物理学在公众和儿童中非常受欢迎,因此社会影响通常被视为我们的其他增值形式之一。 数据档案的开发对许多项目起着越来越重要的作用。一些设施完全用于公共调查,其数据可供社区免费访问,而其他设施则在专有期(通常为 6-12 个月)后发布其数据。天文台/设施通常会公开征集(每年一到两次)新的观测,各个研究小组/团队提交提案,通过同行评审进行评判和分配。这些设施的认购量通常超额几倍甚至十倍,因此竞争非常激烈。建造仪器的财团也常常通过保证时间的观测获得部分补偿。因此,在很大程度上,数据是我们领域的一种货币形式。 研究项目的时间表差别很大。在某些情况下,可以相对较快地完成(例如基于公共数据、档案研究),而对于在专有期结束时发布的观测项目,时间会稍长一些,对于最大和最复杂的项目(例如涉及新设施或新方法),可能需要几年甚至几十年的时间。 由于天文设施价格昂贵(数百万至数十亿欧元),许多设施都是国际性的,因此我们的领域实际上没有边界。 建造和运营大型国际设施的时间通常比拨款周期长得多(几十年)。寻找确保长期稳定地资助此类项目的方法,是本领域面临的一大挑战,特别是因为资助机构往往区分基础设施建设、运营成本和科学开发。 现代天体物理学中研究的大多数过程都是高度复杂和非线性的,因此建模越来越依赖于半解析和数值方法。大型 HPC 设施的使用越来越多,这是我们领域的一个转变,使我们更接近信息学、物理学和理论分子化学等领域的努力。 我们的领域有许多跨学科联系:除了 HPC 和信息学之外,物理学和数学中也有常见例子(例如,通过荷兰天体粒子物理委员会 CAN 的广义相对论/黑洞/引力波和天体粒子物理等主题),以及化学、生物学和地球科学(例如,行星科学,通过荷兰天体化学网络、DAN 和行星和系外行星计划、PEPSCi 等计划)。
