摘要:根据世界卫生组织的数据,2020 年,结直肠癌 (CRC) 导致全球男女老少约 935,173 人死亡。现有的抗癌疗法包括化疗、放疗和抗癌药物,但治疗效果有限、副作用大且成功率低。这促使人们出现了几种新型治疗剂作为 CRC 的潜在疗法,包括合成和天然材料。口服和靶向药物输送系统是 CRC 治疗的有吸引力的策略,因为它们可以最大限度地减少副作用,增强抗癌药物的疗效。然而,口服药物输送至今仍面临着药物溶解度差、稳定性差和渗透性差等挑战。由于纳米粒子能够控制包封剂的释放、药物靶向性并减少给药次数,因此最近开发了各种口服纳米方法和靶向药物输送系统。壳聚糖聚合物独特的物理化学性质有助于克服口服药物输送障碍并靶向结肠肿瘤细胞。基于壳聚糖的纳米载体通过增强几种抗结直肠癌药物的稳定性、靶向性和生物利用度提供了额外的改进。改性壳聚糖衍生物还通过加强对封装材料对胃肠道 (GIT) 酸性和酶降解的保护,促进了 CRC 靶向性。本综述旨在概述 CRC 病理学、治疗和口服药物输送的障碍。它还强调了纳米技术在口服药物靶向输送系统中的作用以及对壳聚糖及其衍生物日益增长的兴趣。本综述总结了迄今为止研究基于壳聚糖的纳米载体在 CRC 治疗中的潜在应用的相关工作。关键词:壳聚糖、结直肠癌、纳米载体、口服输送、药物靶向、纳米技术
海报按 HSZG 基层单位(活跃于院系)排列。社论 ______________________________________________________________________ 5 概览 PF/RF(主管研究/研究部门的副校长): - HSZG 2020 - 2026 年的研究项目,由萨克森州议会为 HAW 的研究提供资金 _______ 6 跨学科 - DISENTANGLE(建立可持续发展的跨学科能力,全面测试,实践) ___________________________________________ 7 - Cobot²(通过团队合作在护理和回收方面实现协同作用) _______________________ 8 IPM(过程工程、过程自动化和测量技术研究所) - 进一步开发用于在教学、研究和商业中应用人工智能的软件工具 ________________________________________ 9 -(RNN)创建使用循环或反馈神经网络的概念框架/指南 _____________ 10 - KoDiZert - 气化和碳捕获 ______________________________ 11 - 低成本心血管系统智能监测辅助系统 ______________________________________________________ 12 ZIRKON(齐陶工艺开发、循环经济、表面技术、天然材料研究研究所) - 开发一种生物过滤器以降低土壤悬浮液中的营养成分(“P-生物过滤器”) _____________________________________________ 13 - 土壤中的微粒橡胶 _______________________________________________ 14 - MiPro - 预测塑料风化为微塑料的过程 _______________ 15 - 新型塑料的基础研究 _____________________________________ 16 BIK(社会科学部教育、信息和通信研究所) - 对上卢萨蒂亚日托机构对教育人员的要求的分析 __________________________________ 17 TRAWOS(转型、住房和社会空间发展研究所) - 卢萨蒂亚可持续结构变化中的社会和文化创新 _______ 18 - 风险.景观.设计 - 人类世的后学科观察_______ 19 GAT(健康、老龄化、工作和技术研究所) - 共同创造和参与开发健康和援助技术 ______________________________________________________________ 20 - 信任数字日常伴侣以减少老年孤独感(VATI-6) __________________________________________________________________ 21
水凝胶由于其独特的特性和不同的应用而成为现代农业中的一种有前途的技术。由交联的亲水性聚合物形成的这些三维结构具有高吸水能力,使其在维持植物的最佳水位中很有价值(Azeem等,2023)。水凝胶可以提高用水效率,降低灌溉成本并提高植物的养分利用率,最终导致农作物产量提高(Oladosu等,2022)。此外,它们可以充当干燥土壤中水的水库,有可能减少频繁灌溉的需求(Louf等,2021)。农业中的水凝胶的使用扩展到各种应用,例如保留土壤饮水,养分,养分和养分和农药,种子涂料,种子涂料,含量控制,甚至是patra Additives(patra and Additives),以及2022222222222222222222。这些应用突出了水凝胶在应对现代农业面临的多重挑战方面的多功能性。此外,正在基于淀粉,壳聚糖和纤维素等天然材料的水凝胶以生物兼容性,无毒性和保留水分的特性探索(Uysal,2024; Li et al。,2022)。并提高了农作物的产量(Vahabi,2023年)。水凝胶的受控释放性能使它们有效地向植物输送水和养分,从而有助于可持续的灌溉实践(Prakash等,2021)。此外,已经证明了水凝胶可节省水含量,减少养分消耗,减轻农作物中的水分压力以及控制植物病原体,展示了它们具有可持续的植物保护潜力和增强的作物产量(Elshafie&Camele,2021年)。现代农业中水凝胶的利用提供了一系列好处,例如改善水管理,增强营养递送和提高农作物生产力。通过利用水凝胶的独特特性,农民可以优化资源利用,减轻环境影响并为农业实践的可持续性做出贡献。
可生物降解的材料是可以被常见的生物学剂分解为与生命兼容的简单分子,例如水和二氧化碳。例子包括木材,羊毛,纸,纸板和微生物,例如昆虫,细菌或真菌。可生物降解产品的优点包括降低环境污染和分解过程中养分的回收利用。这减少了持续垃圾的积累,这与不可生物降解的材料(如塑料瓶或尼龙袋)不同。但是,某些中间降解产物可能是有毒的,甚至比原始分子更重要。例如,农业中使用的一些农药因其毒性而臭名昭著。可生物降解材料的生产是一种增长的趋势,这是由于消费者对减少环境损害的需求的驱动。越来越多的企业在包装中使用纸和非塑料袋,减少废物和污染。从玉米或小麦淀粉的可生物降解塑料的发展也已获得动力。这些塑料比传统的基于石油的塑料更快地降解,其中一些产品在六到二十四个月内分解。汽车行业还致力于为汽车内部和保险杠开发可生物降解的材料。研究人员已为各种可生物降解的塑料(包括用黑麦或压缩纤维制成的塑料)提供了专利。该研究表明,只有40%的“可堆肥”产品实际上在家庭堆肥中分解。公司通常对产品的可持续性秘密,使消费者感到困惑。生态意识的人努力购买真正的可生物降解产品,但最终可能会得到虚假的索赔。在此处给定文章文本亚麻是一种自然纤维,该天然纤维从亚麻植物中获得,可以在几年内轻松降解。这种环保的纺织品没有微塑料和污染物,这些污染物在洗涤时会释放。与聚酯和尼龙等合成材料相比,产生亚麻的能量和水需要更少。蓖麻油是从Ricinus Communis植物的种子中提取的,这是一种可生物降解的材料,广泛用于美容产品。公司现在正在其太阳镜框架中使用蓖麻油来创建生态友好的眼镜。合成弹性体由不可生物降解的石油制成。但是,公司开发了可生物降解类型的弹性体,这些弹性体源自可再生原材料,例如甘蔗和玉米。软木是一种天然材料,它是从软木橡树树皮获得的,可用于包括袋子在内的各种产品中。它也可以变成人造皮革,用于手袋和钱包。木薯是单使用袋中使用的塑料的可生物降解替代品。这些袋子是从木薯中提取的,并与有机成分结合使用,以创建可生物降解的,类似塑料的材料可生物降解材料,越来越多地用作传统不可降解材料的可持续替代品。这些材料很容易被自然环境中的微生物分解,从而使它们安全地在土壤和水道上处置。可生物降解材料的示例包括纸张,纸板和有机废物。可生物降解的材料可以由有限范围的有机天然材料制成,但是它们的潜在用途受到这种限制的限制。聆听有关可生物降解材料的文章可能会提供对环保产品(例如可生物降解牙膏)的宝贵见解。常见的非生物降解产品的无塑料替代品,许多日常物品都是不可生物降解的,但仍然具有环保替代品。例如,有机植物物质在短短两个月内分解。但是,其他材料(例如棉质T恤)可能需要长达六个月的时间才能分解,而用有机动物材料制成的羊毛袜子可以持续一年至五年。同样,诸如塑料袋之类的合成材料的分解时间非常长,超过500年,而泡沫聚苯乙烯杯也超过了这个时间表。同样,铝罐可能会在八十至一百年中分解。选择产品时,必须意识到它们的材料组成。用纸板或纸等材料制成的可生物降解包装的物品更可能是环保的。但是,应谨慎处理含有塑料或其他不可生物降解材料的材料。作为消费者,我们还必须提防公司使用的绿色策略,这些策略可能会误导消费者相信他们的产品在不限制的情况下对他们的产品很友好。在没有完全可生物降解的选项的情况下,研究产品的可重复性和可回收性可以帮助做出更明智的选择。
杂乱无章是可以的。当结构被重新添加到溪流中时,它旨在模仿和促进木材积累和海狸坝活动的过程。结构就像一顿饭一样被喂给系统,应该类似于自然“杂乱”系统中的自然结构(原木堆、海狸坝、倒下的树木)。结构不必完美建造才能产生理想的结果。少关注形式,多关注结构将促进的过程。数量就是力量。大量较小的结构相互协同工作可以比几个孤立的、过度建造的、高度安全的结构取得更大的成就。使用大量较小的结构提供了冗余并降低了任何一个结构的重要性。通常需要许多结构,设计成一个综合体来促进木材积累和海狸坝活动的过程,从而实现预期的结果。使用天然建筑材料。应该使用天然材料,因为结构只是为了启动过程恢复并随着时间的推移而消失。最好使用本地采购的材料,因为它们简化了物流并降低了成本。让系统完成工作。为河流景观和/或河狸提供工具(结构),以促进自然过程通过水流动力和生态系统工程(而不是柴油动力)自我修复,从而提高效率,使修复能够扩展到退化范围。将决策权交给系统。尽可能让系统做出关键的设计决策,只需提供调整所需的工具和空间即可。将决策权交给系统会淡化由于知识有限而产生的不确定性的重要性。例如,根据有限的水文信息选择要分级的洪泛区高程可能是一项复杂且不确定的工作,但根据该系统的水文情况来构建自己的洪泛区等级会降低由于知识有限而产生的不确定性的重要性。自给自足的系统是解决方案。低技术修复行动本身并不是解决方案。相反,它们只是旨在启动流程并推动系统朝着构建弹性、自给自足的河流景观的最终目标迈进。
估计,由于抗生素耐药细菌引起的感染每年享有70万寿命。如果耐药细菌继续以相同的速度进化,则预计到2050年,该数字将增加到1000万。[5]同样,生物和非生物表面上生物膜的形成对人类健康也面临着另一个重大挑战。生物膜形成。[2,3,6]在生物膜形成期间,微生物经历了几种生物学变化,导致细胞外聚合物物质(EPS)产生。EPS矩阵可防止并从攻击生物膜的化学物质和其他毒素中产生微生物。这使得很难使用传统的抗生素治疗生物膜,并使微生物获得抗菌抗性。[7]解决此问题的一种方法是使用抗菌材料和表面,以抑制抑制性细胞的附着和生物膜的形成。[4,8–13]这种抗菌材料作为工程材料的作用至关重要,因为这些材料可能有助于我们减少对抗生素和消毒剂的依赖。已经采用了各种技术来制造抗臭材料,包括用杀菌层涂上材料表面。[11,14–18]常见方法是基于从材料表面(例如金属衍生物和抗生素)释放杀菌剂的。[24]因此,当地形特征的尺寸在亚微米和纳米长度尺度中时,表面会抑制细菌的附着。[18]一种替代方法涉及将微/纳米摄影应用于消除细菌细胞的应用,并且在过去十年中,这种方法引起了很大的兴趣。[19-21]具有独特的微/纳米尺度表面纹理和特征的材料已被证明可以有效禁止细菌附着并防止生物膜形成。[22,23]提出,当地形特征的尺寸小于细菌细胞的尺寸时,降低了附着的细胞的可用接触区域。由于其表面地形特征,许多天然材料已经获得了防染色和反抗性行为。[11,25,26]这激发了科学家开发类似的材料和结构,这些材料和结构限制了生物膜形成并积极消除与表面接触的细菌。这样的
摘要:本文,提出了仅使用办公级工具(即卷到滚动热压印)将激光生产的氧化石墨烯(RGO)在柔性聚合物上的策略首次证明其直接生物电动分析的有效性。这种直接,可扩展和低成本的方法使我们能够克服生物分析设备中激光诱导的RGO膜的整合的极限。激光生产的RGO已使用简单的滚动层型(PET,PVC和EVA)热压到不同的聚合物底物(PET,PVC和EVA);通过形态化学和电化学表征将获得的TS-RGO膜与本机RGO(未转移)进行了比较。尤其是,已经研究了酶对催化过程的影响,研究了果糖脱氢酶(FDH)和TS-RGO传感器之间的直接电子转移(DET)反应。在TS-RGO传感器之间观察到了显着的差异。事实证明,PET是支持激光诱导的RGO转移的选择性底物,从而保留了天然材料的形态化学特征并返回降低的电容电流。值得注意的是,TS-RGO使用非常低量的FDH单元(15 MU)确保上催化性。最终,通过低成本台式技术制造了基于TS-RGO的第三代完整酶传感器。ts -rgo PET表现出比天然RGO优于的生物分析性能,使得敏感(0.0289μa cm -2μm -1 -m -1)且可重现(RSD = 3%,n = 3)D-在纳米摩尔水平下确定果糖(LOD =0.2μm)。ts-rgo的利用性作为一个需要的设备证明了 ts-rgo的可利用性。 关键字:减少氧化石墨烯,CO 2-激光器,生物催化,柔性生物传感器,纳米材料导电膜,电化学生物传感器ts-rgo的可利用性。关键字:减少氧化石墨烯,CO 2-激光器,生物催化,柔性生物传感器,纳米材料导电膜,电化学生物传感器
目的:第一个目标是摆脱废物并减少环境污染,另一个目标是研究这些纤维对聚酯性能(复合材料的弯曲和拉伸试验阻力)的影响并将其用于应用。此外,还研究了湿度环境对复合材料性能的影响。设计/方法/方法:使用天然纤维,即被视为废物的蛋壳和锯末与聚酯。制备了几个不同重量百分比(30%和40%)的样品,研究了它们的机械性能,并将其浸泡在水中15天。并研究水对这些性能的影响。研究发现,可以将这些纤维(废物)与聚酯一起使用并从中受益。研究发现,当向聚酯中添加纤维时,拉伸强度会降低,但弯曲会增加强度。最后,研究发现,当将样品浸入水中时,材料会变弱,其机械性能会下降。发现:可以注意到,添加 40% 和 30% 的天然纤维可以改善聚酯在弯曲试验中的机械性能,其中弯曲试验随着纤维体积分数的增加而增加。可以注意到,添加 40% 和 30% 的天然纤维会降低聚酯在拉伸试验中的机械性能(拉伸强度)。当用水处理天然复合材料 15 天时,水会降低弯曲和拉伸试验的机械性能。研究的局限性/含义:通过工作发现本研究的局限性之一是,增加添加到聚酯中的纤维的重量比会导致聚酯失效,因此我们建议使用较低重量比的纤维。实际意义:通过工作发现本研究的局限性之一是,增加添加到聚酯中的纤维的重量比会导致聚酯失效,因此我们建议使用较低重量比的纤维。原创性/价值:这项研究的原创价值在于利用被视为废物的纤维,重新利用它们,并利用在某些不需要高机械性能复合材料的应用中。关键词:聚酯树脂、复合天然材料、拉伸和弯曲试验对本文的引用应以以下方式给出:AA Nayeeif、ZK Hamdan、ZW Metteb、FA Abdulla、NA Jebur,天然填料基复合材料,材料科学与工程档案 116/1 (2022) 5-13。DOI:https://doi.org/10.5604/01.3001.0016.0972
摘要这项研究研究了来自埃及新山谷的伊利特粘土的潜力,用于去除重金属离子(Cu(ii),Ni(ii),Zn(ii)和Cd(ii)),该粘土通过工业废水通过吸附过程。实验在各种受控条件下评估了吸附行为:不同的金属离子浓度,吸附剂剂量,溶液pH和混合时间(在500 rpm时)。使用傅立叶和纳米粘土的表征采用了傅里叶变换红外光谱(FTIR),扫描电子显微镜(SEM)和传输电子显微镜(TEM)。结果表明,在室温下,Illite和Nanoillite在90分钟内通过室温(25°C)在90分钟内通过dirite和nanoillite迅速吸收。所有研究的金属离子(Cu(II),Ni(ii),Zn(ii)和CD(II))的浓度为3 mg/L。此外,吸附等温度数据建议与二阶动力学模型更好地拟合,这表示吸附机理。最后,伊利石/纳米粘土的有效性通过其在去除现实世界工业废水中的金属离子中的应用来证明,从而大大降低了其浓度。这种方法解决了与重金属污染相关的环境和健康问题。关键字:纳米颗粒;吸附;重金属;动力学等温;伊利特;工业废水1。由于其高效率,易于处理性,众多吸附剂的可用性以及负担能力,通常在所有水处理方法中选择吸附,以去除重金属离子。引言近年来,研究重点是从水溶液[1],离子交换[2],化学沉淀[3],植物渗透[4],超滤,逆渗透和电差异[5]中取出重金属[5]只是迁移分解的重量分泌的多种方法中的几种方法。活化碳是使用最广泛的吸附剂,并以其高金属吸附能力而闻名[7]。尽管活性炭是从废水中消除金属离子的有用工具,但其使用量很高,因此需要添加螯合化学物质以最大程度地提高其有效性,从而提高了治疗成本[8]。在过去的二十年中,寻找负担得起,高效的重金属吸附剂的许多工作。此外,已经检查了几种天然材料和废物的吸附行为[9]。这些材料包括农业副产品,微生物和粘土矿物质[10]。这些研究中的大多数表明,天然货物可以作为重金属吸附剂的功能良好[11]。重金属离子发生在许多工业活动中,这种污染对环境和人类健康构成了严重威胁,因为这些金属是不可生物降解的,有毒的,即使在低浓度下,也进入食物链[12]。重金属在人体中的积累会导致大脑,皮肤,胰腺和心脏病[13,14]。重金属被归类为有毒和致癌,它们能够在组织中积累并引起疾病和疾病(表1)。更重要的是,粘土价格便宜,丰富,广泛并且随时可用。粘土表现出可以去除水污染物(例如化学物质[16,17]和重金属[18])的能力。其他考虑因素是用户友好性,文化可接受性和低维护成本。Illite是一个2:1粘土矿物质,几乎没有层间肿胀的趋势[19]。具有Illite的吸附过程取决于几个因素,包括pH,吸附剂含量,初始吸附浓度,接触时间,温度,粒径和离子强度。在常规方法中,实验是通过系统地改变所研究因素的同时将其他因素持续进行的。主要的好处是,不仅可以评估单个参数的影响,而且可以在给定过程中的相对重要性以及得出两个或多个变量的相互作用的能力[20]。这项研究的目的是将伊利特用作吸附剂,然后准备伊利特nano Illite,然后将其用于工业废水水中的cu(ii),ni(ii),Zn(ii),Zn(ii)和cd(ii)离子。我们详细评估了Illite和Nano Illite的去除性能。等温线和热力学建模。