[2][3]作者介绍了一种锥形缝隙天线和一种对映锥形缝隙天线,通过合并六个以上的谐振来实现 UWB 响应。这种结构有许多几何参数,并且在不同频率下获得的辐射模式也不稳定。Hoods 等人 [4] 提出了一种双平面 UWB 结构,它具有小增益和不均匀的辐射模式。在 [5] 中,作者介绍了一种紧凑型 UWB 天线,其中通过两个半圆来增强带宽。在 [6] 中,通过引入一个带缝隙的附加环形结构来实现 UWB 操作。[7] 中讨论了一种基于混合缝隙馈电网络的 UWB 天线。[8] 中介绍了通过在微带馈电的接地平面上创建 UWB 特性。Shameena 等人 [9] 介绍了一种 CPW 馈电 UWB,其中使用具有许多维参数的阶梯形缝隙来实现 UWB 特性。C Vinisha 等人[10] 介绍了一种电小尺寸 CPW 馈电 UWB,其中使用环形环来获得超宽带宽。S. Nicolaou 等人在 [11] 中讨论了一种 UWB 辐射器,其槽呈指数锥形,尺寸非常大,增益很小。[12] 介绍了一种非均匀辐射、小增益 UWB 偶极天线。它提供了较差且高度失真的脉冲响应。[13] 讨论了一种适用于医学成像应用的定向 UWB,尺寸非常大,辐射方向图不均匀。然而,上述所有天线尺寸都很大或结构复杂
感谢您购买IDS双向Xwave 2无线门固体,该门通过Xwave 2 Hub连接到X系列警报面板或直接到Onyyx Wireless System。注意:Xwave 2个设备与Xwave设备不兼容!有关IDS产品的更多信息,请访问:www.idsprotect.com
摘要 — 为了在所有飞行阶段提供无缝覆盖,航空通信系统 (ACS) 必须整合天基、空基和地面平台,以形成面向航空的天空地一体化网络 (SAGIN)。在大陆地区,L 波段航空宽带通信 (ABC) 因支持空中交通管理 (ATM) 现代化而越来越受欢迎。然而,由于传统系统,L 波段 ABC 面临着频谱拥塞和严重干扰的挑战。为了解决这些问题,我们提出了一种新颖的多天线辅助 L 波段 ABC 范式来解决可靠和高速率空对地 (A2G) 传输的关键问题。具体而言,我们首先介绍 ABC 的发展路线图。此外,我们讨论了 L 波段 ABC 传播环境的特殊性以及相关多天线技术的独特挑战。为了克服这些挑战,我们从信道估计、可靠传输和多址接入的角度提出了一种先进的多天线辅助 L 波段 ABC 范式。最后,我们阐明了 SAGIN 航空部分的引人注目的研究方向。
摘要 — 为了在所有飞行阶段提供无缝覆盖,航空通信系统 (ACS) 必须整合天基、空基和地面平台,以形成面向航空的天空地一体化网络 (SAGIN)。在大陆地区,L 波段航空宽带通信 (ABC) 因支持空中交通管理 (ATM) 现代化而越来越受欢迎。然而,由于传统系统,L 波段 ABC 面临着频谱拥塞和严重干扰的挑战。为了解决这些问题,我们提出了一种新颖的多天线辅助 L 波段 ABC 范式来解决可靠和高速率空对地 (A2G) 传输的关键问题。具体而言,我们首先介绍 ABC 的发展路线图。此外,我们讨论了 L 波段 ABC 传播环境的特殊性以及相关多天线技术的独特挑战。为了克服这些挑战,我们从信道估计、可靠传输和多址接入的角度提出了一种先进的多天线辅助 L 波段 ABC 范式。最后,我们阐明了 SAGIN 航空部分的引人注目的研究方向。
摘要:大多数现代地球和宇宙观测航天器现在都配备了大型轻便灵活的结构,例如天线、望远镜和可扩展元件。承载更复杂、更大的附件的趋势对于高精度科学应用至关重要,这使得轨道卫星更容易因结构损坏而导致性能损失或性能下降。在这种情况下,结构健康监测策略可用于评估卫星子结构的健康状况。然而,特别是在分析大型附件时,传统方法可能不足以识别局部损坏,因为它们通常会在系统动力学中引起不太可观察的变化,但会导致有效载荷数据和信息的相关丢失。本文提出了一种深度神经网络来检测故障并研究传感器对在大型网状反射器天线上承载分布式加速度计网络的轨道卫星的损伤分类的灵敏度。传感器获取的时间序列是使用完全耦合的 3D 模拟器生成的,该模拟器模拟柔性卫星的在轨姿态行为,其附件采用有限元技术建模。然后使用在复合场景中收集的传感器响应对机器学习架构进行训练和测试,该场景不仅包括结构元素的完全失效(结构断裂),还包括中等程度的结构损坏。所提出的深度学习框架和传感器配置被证明可以准确检测最关键区域或结构的故障,同时为几何特性和传感器分布开辟了新的研究可能性。
摘要。本文讨论了一种具有圆极化特性的紧凑型 Koch 曲线分形边界天线。辐射器呈方形,四边有 V 型槽截头。分形结构的工作频带为 2.18 GHz 至 2.3 GHz 频段。沿辐射贴片的周边融入了二阶 Koch 分形曲线。分形天线由同轴探针馈电技术激励,对角放置以产生圆极化辐射。贴片元件采用 HFSS 设计,并制造在具有介电常数 (er = 2.2) 的基板 (RT/Duroid 5880 TM) 上,用于设计尺寸为 0.39 k 0 9 0.39 k 0 9 0.024 k 0 (fr = 2.26 GHz) 的分形天线。该结构表现出 6.93 dBi 的峰值增益响应以及覆盖工作频带的全向辐射模式。模拟和测量结果得到验证,并且发现所提出的设计适用于空间应用。
a 马德里卡洛斯三世大学信号理论与通信系,28911 Legan ´ es,马德里,西班牙 b 伦敦都市大学通信技术中心,英国 c 米兰比可卡大学物理系,20126,米兰,意大利 d 电气工程与计算机科学学院,KTH 皇家理工学院,SE 100 – 44 斯德哥尔摩,瑞典 e TSC。奥维耶多大学电气工程系,33203 Gij ´ on,西班牙 f 焦夫大学工程学院电气工程系,Sakaka 42421,沙特阿拉伯 g LEME,UPL,巴黎南泰尔大学,F92410,阿夫雷城,法国 h 国家科学研究所 (INRS),蒙特利尔,QC,H5A 1K6,加拿大 i 法兰西理工大学,CNRS,里尔大学,ISEN,里尔中央大学,UMR 8520,微电子和纳米技术研究所 (IEMN),F-59313 瓦朗谢讷,法国 j INSA Hauts de France,F-59313 瓦朗谢讷,法国 k电气、电子与通信工程系及研究所智慧城市,纳瓦拉公立大学,31006 潘普洛纳,西班牙 l 蒙特雷技术大学,工程与科学学院 m 罗马大学“Tor Vergata”电子工程系,Via del Politecnico 1,00133 罗马,意大利
分形结构是一种独特的几何形状,在自然界中的许多物体中都可以看到,例如云、海岸线、DNA、树木甚至菠萝。这种结构具有多种几何形状、自相似性和空间填充特性。由于这些特性,分形几何形状是无线通信中天线小型化的首选。许多情况都需要小型紧凑型天线,包括体内通信。在本文中,我们回顾了分形天线研究的最新趋势和进展,特别是用于体内通信的可植入天线的小型化。该综述来自从 IEEE、PubMed、Nature、MDPI、Elsevier 和 Google Scholar 等在线图书馆收集的文章。因此,我们收集了 60 多篇与分形植入式天线和体内通信相关的文章。事实上,在过去的几十年里,许多研究人员已经提出了一种具有分形几何的可植入紧凑型天线。分形几何允许在天线的较小区域内布线更长的电气长度。然而,设计分形天线仍有几个挑战,包括带宽、制造复杂性和单元间干扰。关键词:分形几何、分形天线、体内通信、无线通信、可植入天线简介
沿 Y 轴的孔宽度为 0.5 毫米,沿 x 轴的孔长度为 20 毫米。每个 I 形孔都蚀刻在传输线贴片平面下方。经过参数研究,计算出了设计的最佳尺寸。此外,传输线在几个馈电网络中通常不是直线,但在几个馈电网络中是直线。它们被认为在某种程度上折叠起来。当水平传输线折叠成 90 度垂直传输线时,输入的大部分功率会在不连续处反射回源,从而降低系统的性能,因为它会导致线路电容发生变化,从而影响线路的阻抗。天线设计中采用了斜接弯曲方法来减少传输线损耗。斜接弯曲的目的是去除少量电容,将线路的阻抗恢复到匹配阻抗。图 4 描绘了用于解决这些问题的微带斜接弯曲的结构。截断通道的尺寸(x)可以通过方形弯头的对角线D来计算。弯头的尺寸可以借助以下方程式[4-6]来计算。
Akila Udage,Nadarajah Narendran 照明研究中心,伦斯勒理工学院,21 Union St.,特洛伊,纽约州,美国电话:(518) 687-7100;电子邮件:narenn2@rpi.edu;网址:www.lrc.rpi.edu/programs/solidstate