讨论了在空间各个区域遇到的环境对几种工程材料的定量效应。在空间真空中,镁的升华在升高的温度下;锌和镉在普通温度下。大多数其他工程师将不受真空影响,除了略微的表面粗糙。在有机物,多硫化物,纤维素,丙烯酸酯,聚氯乙烯,新prene以及一些尼龙,多酯,环氧脂蛋白,聚氨酸酯和醇酸酯中,在真空中的温度相当低的温度下分解。聚乙烯,聚丙烯,大多数氟化合物和硅树脂在250'C以下的真空中不会显着分解。除了增塑材料外,没有明显的升华或分解,在真空中的工程临时损失显着损失。同样,在1个大气处的气密墙的墙壁逃脱也不会引起人们的关注。
为了实现科学探索的目标,从网络威胁性的立场中通常认为太空系统被认为是低价值的,几乎无法访问。这导致了太空系统被忽略的早期通信安全性,这在很大程度上是无关紧要的 - 毕竟,黑客入侵火星流浪者会有什么价值?基于对称的密钥方法,例如仅在没有钥匙建立的情况下[1],[2],是相对原始的。 因此,与陆地网络的巨大文献设计和分析协议相比,在过去几十年中,太空通信安全性的发展有限并不奇怪。 但是,空间系统在工业用途中越来越普遍,甚至依靠每日平凡的任务。 SpaceX的革命性可重复使用的火箭在2010年代上市[3],近距离卫星的扩散作为互联网技术已经彻底改变了对非生物平台和可能性的使用。 基于太空的互联网提供商[4],Tele-Health [5],太空旅游[6],Astroid Mining [7]和许多其他合资企业已经发展出来,这些企业继续扩大人们对空间及其安全性的依赖[8]。 现在,从银行信息到关键基础架构管理的所有内容都通过空间连接流动。 公共安全,健康,金融交易都是高价值的目标,并激发了对太空通信的攻击[9]。 空间系统现在需要从未有过的内在目标:安全渠道建立。 这种方法自然有限,而不是是相对原始的。因此,与陆地网络的巨大文献设计和分析协议相比,在过去几十年中,太空通信安全性的发展有限并不奇怪。但是,空间系统在工业用途中越来越普遍,甚至依靠每日平凡的任务。SpaceX的革命性可重复使用的火箭在2010年代上市[3],近距离卫星的扩散作为互联网技术已经彻底改变了对非生物平台和可能性的使用。基于太空的互联网提供商[4],Tele-Health [5],太空旅游[6],Astroid Mining [7]和许多其他合资企业已经发展出来,这些企业继续扩大人们对空间及其安全性的依赖[8]。现在,从银行信息到关键基础架构管理的所有内容都通过空间连接流动。公共安全,健康,金融交易都是高价值的目标,并激发了对太空通信的攻击[9]。空间系统现在需要从未有过的内在目标:安全渠道建立。这种方法自然有限,而不是安全渠道通常是通过加密和身份验证来定义的,以确保发送并接收到的私人和未经改变的数据。此类加密功能需要秘密键(对称或不对称)。一些初始的安全方法手动安装了预先共享的密钥,这些方法是空间数据系统咨询委员会(CCSD)建议的方法[10],[11]。
NewSpace 代表了一种现代化的太空任务方法,其特点是三个主要元素:太空私有化、卫星小型化和利用太空数据开发创新服务[1]。这一概念不同于传统的政府主导的太空计划,强调 SpaceX 和 Rocket Lab 等私营公司在卫星制造和发射中的作用。商用现货 (COTS) 组件的调整和筛选推动了卫星的小型化,包括立方体、微型和纳米卫星,使其能够在单个发射器中部署并方便进入低地球轨道 (LEO) [2]。低地球轨道卫星运行在距离地球表面 160 至 2000 公里的轨道上 [1],提供各种服务。其中包括地球观测、互联网连接、科学研究、卫星导航、与 5G 技术的集成以及用于航空和海事目的的跟踪。这些服务是太空私有化和卫星小型化趋势的综合影响的结果 [3]。 NewSpace 催生了卫星物联网 (IoT) 的出现,使通过紧凑而高效的低地球轨道 (LEO) 卫星直接从地面传感器收集数据成为可能 [4]。以前,这种数据收集需要广泛的地面站网络。然而,NewSpace 的进步促进了基于云的服务,这些服务提供了共享地面站网络和用于数据处理的高级计算能力。此外,LEO 星座正在改变物联网连接,特别是在偏远地区,FOSSA Systems、Sateliot 或 Lacuna 等公司处于这一发展的前沿。基于卫星的低功耗广域网 (LPWAN) 的出现标志着物联网领域的重大发展,以与地面提供商具有竞争力的成本为设备提供全球连接,从而有望大幅扩展连接设备 [5]。物联网正在通过实现从传感器到自动驾驶汽车的各种设备之间的连接,使各个行业发生革命性变化,自动化和增强运营
简介:缓步动物是一种微生物极端微生物,以其对恶劣环境的超强适应力而闻名,已成为天体生物学研究和探索地球以外生命潜力的关键模型。这些生物表现出非凡的适应性,能够在极端条件下生存,例如从 -271°C 到 150°C 以上的温度、超过大气压 1,200 倍的压力、干燥和强电离辐射。它们独特的生物学特性对支撑这种适应力的分子和细胞机制提出了根本问题。这种适应性的核心是特定的蛋白质,例如 Dsup(损伤抑制剂),它通过在遗传物质周围形成保护盾来减轻辐射引起的 DNA 损伤,减少双链断裂并保持基因组完整性。
• 服务提供、轨道机动、姿态控制、合作目标能力; • 能够在轨道上承载和释放其他 PL/飞行器以执行联合行动(减少会合距离和复杂性); • 有可能在重返大气层前不久释放 PL/飞行器,以研究/探索重返大气层阶段和高层大气的控制; • IOD/IOV 和 TRL 提升应用,能够回收经过飞行验证的有价值资产进行检查、进一步分析和重复使用;
简介:来自加州贻贝的贻贝足蛋白 (MFP) 的粘附特性因其在生物医学工程和材料科学等领域的潜在应用而备受关注[1][2]。然而,温度、压力和 pH 等太空环境对这些蛋白质的影响尚未得到充分探索。本研究提出了一种计算机模拟方法来研究 MFP 在太空相关条件下的结构动力学。通过序列分析和分子动力学模拟的结构分析,我们模拟了关键粘附蛋白的行为,重点关注它们的构象变化和相互作用能。[4] 我们的研究结果表明,虽然一些 MFP 在不同条件下表现出稳定性模式的变化。这些结果为 MFP 在太空应用中的潜在应用提供了宝贵的见解,例如用于修复航天器的生物粘合剂和适用于陆地环境的其他材料。此外,MFP 可用于太空医学中的伤口愈合,其独特的涂层可用于潮湿和太空环境[4][5]。需要进一步研究来验证这些计算预测并探索在空间技术中利用 MFP 的可行性。
证明了其能够显著减少非法活动和经济损失的能力,特别是在渔业领域,据估计,每年因非法活动造成的损失高达 360 亿美元。Unseenlabs 技术独特的 RF 指纹识别能力能够准确识别和跟踪船只,为执法和保护工作提供重要情报。Unseenlabs 还为众多私营部门利益相关者提供服务。其中包括需要准确情报进行风险评估和索赔管理的保险公司、需要可靠船只跟踪的船东以及寻求先进监控和安全解决方案的石油和天然气及海上工业公司。
NewSpace 代表了一种现代化的太空任务方法,其特点是三个主要元素:太空私有化、卫星小型化和利用太空数据开发创新服务[1]。这一概念不同于传统的政府主导的太空计划,强调 SpaceX 和 Rocket Lab 等私营公司在卫星制造和发射中的作用。商用现货 (COTS) 组件的调整和筛选推动了卫星的小型化,包括立方体、微型和纳米卫星,使其能够在单个发射器中部署并方便进入低地球轨道 (LEO) [2]。低地球轨道卫星运行在距离地球表面 160 至 2000 公里的轨道上 [1],提供各种服务。其中包括地球观测、互联网连接、科学研究、卫星导航、与 5G 技术的集成以及用于航空和海事目的的跟踪。这些服务是太空私有化和卫星小型化趋势的综合影响的结果 [3]。 NewSpace 催生了卫星物联网 (IoT) 的出现,使通过紧凑而高效的低地球轨道 (LEO) 卫星直接从地面传感器收集数据成为可能 [4]。以前,这种数据收集需要广泛的地面站网络。然而,NewSpace 的进步促进了基于云的服务,这些服务提供了共享地面站网络和用于数据处理的高级计算能力。此外,LEO 星座正在改变物联网连接,特别是在偏远地区,FOSSA Systems、Sateliot 或 Lacuna 等公司处于这一发展的前沿。基于卫星的低功耗广域网 (LPWAN) 的出现标志着物联网领域的重大发展,以与地面提供商具有竞争力的成本为设备提供全球连接,从而有望大幅扩展连接设备 [5]。物联网正在通过实现从传感器到自动驾驶汽车的各种设备之间的连接,使各个行业发生革命性变化,自动化和增强运营
1电离和非电离辐射保护研究中心(INIRPRC),设拉子医学科学大学,伊朗设拉子,伊朗,2生物学与化学科学系,黎巴嫩国际艺术与科学学院,黎巴嫩国际大学,塞达纳,黎巴嫩,黎巴嫩,生物学与化学科学系3号,黎巴嫩,黎巴嫩,国际大学,贝鲁特大学,黎巴嫩大学,黎巴嫩,黎巴嫩,黎巴嫩,黎巴嫩,黎巴嫩,黎巴嫩,黎巴嫩,黎巴嫩,4。英国格拉斯哥,黎巴嫩国际大学艺术与科学学院5号生物医学科学系,黎巴嫩,黎巴嫩,6种应用数学与生物信息学中心(CAMB),墨西哥湾大学科学与技术大学,科威特市科威特市,科威特,科威特,科威特,科学院7号,核物质学院,SCIECHICERINES,SCIISICENTRY,SCIISICENTRY,SCIISICENTRY,SCIISICENTRY,COLID POSIMICENTIRISISTION,COLID POSIMICENTRED,COLID POSICERINES(NEP)。 (CAS),布拉格,捷克西亚,辐射物理系8
立方体卫星,或称CubeSat,确实是一种最近越来越受欢迎的纳米卫星,尤其是那些将立方体卫星视为太空计划传统卫星替代品的人。这是因为它们成本低,并且可以使用商用现货组件制造。立方体卫星的最小尺寸为1U(100 × 100 mm2)。1U可轻松升级以用于更大规模的任务(2至12U)。立方体卫星可执行传统卫星的所有基本活动。其电力需求由固定在立方体卫星机身上的电池组和太阳能电池板满足。然而,由于立方体卫星的尺寸比传统卫星小,因此其子系统必须非常小。此外,天线设计是卫星的一个关键组成部分,包括地面站和卫星之间的下行和上行通信。然而,它的尺寸和重量必须与立方体卫星兼容,并必须具有良好的辐射性能[1]。立方体卫星的天线数量最近有所增加,这些卫星工作在 437 MHz(即业余超高频频段),这不仅可以实现无缝上行和下行通信,还可以使一个立方体卫星在网络中相互连接。此外,超高频范围内的立方体卫星天线配置提供平面和非平面几何形状。文献中已经发表了许多适用于在超高频频段工作的立方体卫星的平面和非平面天线配置,包括缝隙天线、偶极天线、单极天线、螺旋天线、八木天线和曲折线天线。贴片天线和缝隙天线是连接轨道立方体卫星与地球上地面站的最佳选择,因为它们体积小、结构紧凑、弹性好、制造简单。它们还具有最小的辐射损耗、较低的色散和简单的输入匹配