摘要:当今的技术发展使得使用机器代替人类执行特定任务成为可能。然而,这种自主设备面临的挑战是在不断变化的外部环境中精确移动和导航。本文分析了不同天气条件(气温、湿度、风速、大气压力、使用的卫星系统类型/可见卫星以及太阳活动)对定位精度的影响。为了到达接收器,卫星信号必须传播很长的距离并穿过地球大气层的所有层,大气层的变化会导致错误和延迟。此外,接收卫星数据的天气条件并不总是有利的。为了研究延迟和误差对定位的影响,对卫星信号进行了测量,确定了运动轨迹,并比较了这些轨迹的标准偏差。所得结果表明,可以实现高精度定位,但太阳耀斑或卫星可见度等变化条件意味着并非所有测量都能达到所需的精度。卫星信号绝对测量法的使用在很大程度上促成了这一点。为了提高 GNSS 系统的定位精度,首先建议使用消除电离层折射的双频接收器。
SEP 能量从超热能(几千电子伏)到相对论能(质子和离子为几千兆电子伏)对空间环境表征具有重要影响。它们与太阳耀斑和 CME 驱动的冲击波一起从太阳发射。SEP 事件构成严重的辐射危害,对依赖航天器的现代技术以及太空中的人类构成威胁。此外,它们还对航空电子设备和商业航空构成威胁。因此,必须制定缓解程序。HESPERIA H2020 EU 项目开发了新型 SEP 事件预测工具,并高度依赖于这些工具来缓解 SEP 事件。这些预测工具以及针对它们所预测事件的科学研究自然存在一些共同的局限性,例如基础数据的可用性和质量。可以说,空间天气应用最重要的数据源之一是 1995 年发射的 NASA/ESA SOHO,它自 1996 年以来一直绕拉格朗日点 L1 运行。该航天器的科学有效载荷由几台远程和现场仪器组成,包括 EPHIN,这是一台视场约为 83 的粒子望远镜,几何因子为 5.1 cm2sr,可测量能量在 0.25 至 10.4 MeV 之间的电子以及能量范围在 4.3 至 53 MeV/核子以上的质子和氦
Yash Kadadi 是亚特兰大威斯敏斯特学校的一名高三学生。他对太空探索有着终生的热爱,并且是 NASA 约翰逊航天中心太空天气预报技术的积极研究人员。他的项目 SWIFT(太空天气成像 + 预报工具)是一种下一代机器学习模型,可以分析太阳磁图并预测威胁宇航员和现代基础设施的致命太阳天气(例如太阳耀斑)。目前,他正致力于将他的代码与 NASA 的 Artemis 月球任务以及未来火星任务的操作工具包集成在一起。他的研究使他成为 Regeneron 科学人才搜索 (STS) 前 300 名学者、Regeneron 国际科学与工程博览会 (ISEF) 入围者以及戴维森研究员奖学金荣誉奖。除了研究之外,Yash 还是学校机器人团队 The WiredCats 的商业和 STEM 外展副总裁,他在那里带头开展社区的外展和可持续发展计划。他还领导着学校的 Discovery 户外项目和屡获殊荣的电影制作俱乐部 (StudioW)。闲暇时,Yash 喜欢音乐制作、举重、制作 YouTube 视频以及与家人一起烹饪。Yash 在大学学习计算机科学,他想探索软件如何与航空航天工程、天体物理学和数学交织在一起,以揭开宇宙最深的奥秘。Yash 梦想有一天自己能创办自己的航空航天公司,帮助人类殖民月球、火星和太阳系。
太阳喷发是日冕磁场能量的爆炸性释放,表现为太阳耀斑和日冕物质抛射。观测表明,喷发区的核心往往是剪切磁拱,即单一的双极结构,特别是在光球层,相应的磁极性沿强梯度极性反转线(PIL)拉长。什么机制会在单一双极场中触发喷发,以及为什么强PIL的场有利于产生喷发,目前仍不清楚。最近,我们利用高精度模拟,建立了太阳喷发的基本机制,即光球层准静态剪切运动驱动的双极场形成内部电流片,随后快速磁重联触发和驱动喷发。这里我们结合理论分析和数值模拟,研究了不同光球磁通分布即磁图下的基本机制的行为。研究表明,不同磁图的双极场在连续剪切下都表现出类似的演变——从磁能的缓慢储存到快速释放——这符合基本机制并证明了所提出机制的稳健性。此外我们发现具有较强PIL的磁图产生较大的喷发,关键原因是具有较强PIL的剪切双极场可以实现更多的非势能,并且它们的内部电流片可以在较低的高度形成较高的电流密度,从而可以更有效地重联。这也为在具有强PIL的活跃区域中观测到的喷发提供了可行的触发机制。
在过去几十年中,对磁化等离子体的分离区域中具有高浓度的磁能的电流板形成,并且通过磁重新连接快速释放的能量的可能性。根据现代概念,当前板的动力学为各种恒星的变化型现象提供了基础,包括其他恒星上的太阳耀斑和耀斑,地球和其他行星磁层中的实体,以及在toka mak等离子体中的破坏不稳定性[1-5]。与理论研究一起,在专用的实验室实验中研究了电流板和磁重新连接的动力学。这些实验除其他因素外,还可以提供非平稳的天体物理现象的实验室建模[6-12]。实验室实验是在高度控制和可恢复的条件下进行的,并使用现代血浆诊断方法,这允许等离子体动力学与电流板中磁场,电流和电子动力学的演变相关联[11-16]。可以在相对较宽的范围内建立实验实验中电流板的初始条件,因此提供了不同结构的当前表,就像在自然条件下的当前板一样(例如,在地球的磁层中)。特别是,通过更改血浆中离子的质量,我们可以在板的相对厚度和霍尔效应在等离子体动力学中的作用发生变化[14,15]。在具有重离子的血浆中,我们获得了具有离子惯性长度的厚度的“薄”次离子电流板。在较轻的离子等离子体中,“厚”电流板通常形成,其厚度超过了离子惯性长度的几倍[14,15,17]。积累在亚稳态电流板附近的磁能可以转化为热能,并转化为血浆高速流的能量[18-20]。等离子体沿着电流板的表面加速,主要是在最初从纸板的中部区域到其两侧的边缘的Ampère力的作用下[11,21]。在某些情况下,血浆加速度可以在空间上进行 -
太空中的带电粒子辐射,包括范艾伦带中捕获的质子和电子以及太阳耀斑质子,是降低太阳能电池性能的最重要因素。目前,由于两项发展,太空光伏发电正在发生重大转变:i) 新任务采用电轨道提升,将等效辐射通量提高多达十倍。ii) 四结器件在太空发电中势头强劲,这些器件采用变质生长或晶圆键合等新生长技术制造。因此,有必要了解新四结以及当前使用的三结电池在这种新环境中的退化行为。为了实现这一目标,开始了一场退化运动。三结和四结电池以及它们各自的同型电池在粒子加速器中用能量为 1 和 3 MeV 的电子和能量为 1、2 和 5 MeV 的质子进行辐照。选择的能量和通量应能代表太空中的辐射环境。对电池进行表征,以确定其电特性和特征退化曲线。为了分析退化数据,采用了位移损伤剂量法:明确引入原子位移阈值能量 T d , eff 作为拟合参数。通过这一改变,非电离能量损失通过分析计算得出。这导致单条曲线上的电子数据崩溃,而这是获得特征退化曲线所必需的。与之前的分析方法不同,不需要引入没有物理意义的额外指数。改进的分析方法已成功应用于 4J 和 3J 电池以及它们各自的同型电池的退化数据。获得了短路电流、开路电压和最大功率点功率的特征退化曲线、退化参数和原子位移阈值能量。对于 3J 电池数据的崩溃,发现阈值能量为 21 eV 的 GaAs NIEL。对于 4J 电池数据的崩溃,发现阈值能量为 25 eV 的 In 0.3 Ga 0.7 As NIEL。计算了特定电轨道提升任务的粒子环境。使用计算出的粒子环境以及确定的 4J 退化特性,根据盖玻片厚度确定了电池的退化。发现最大功率点的功率下降到 87%
EPRI EMP 报告和电网安全:关键信息背景 4 月 30 日,电力研究所 (EPRI) 将发布其最新电磁脉冲 (EMP) 报告的结果,题为《高空电磁脉冲和大容量电力系统》。该研究重点关注单次高空核爆炸产生的 E1、E2 和 E3 EMP 的潜在综合影响。该研究还确定并测试了 E1 EMP 影响的潜在缓解方案。这是 EPRI 的第三份也是最后一份报告,重点关注高空电磁脉冲 (HEMP) 对大容量电力(或电力传输)系统的潜在影响。主要合作者包括美国能源部、劳伦斯利弗莫尔国家实验室、桑迪亚国家实验室、洛斯阿拉莫斯国家实验室、国防威胁降低局和电力部门协调委员会。地球大气层之上的核爆炸会将电磁能量推向地表,产生一个初始的、持续时间短的脉冲,上升时间为 2.5 亿分之一秒 (E1);一个中间脉冲,其特征类似于附近雷击引起的脉冲 (E2);以及一个可能持续数分钟的晚期脉冲,类似于太阳耀斑引起的严重地磁扰动 (E3)。每种类型的脉冲都会对电子设备造成不同的物理影响。EPRI 的第一份 EMP 报告于 2017 年 2 月发布,重点关注 E3 以及单次 HEMP 事件对大型电力变压器造成热损坏的可能性。研究结果表明,只有“少数地理上分散的变压器存在潜在的热损坏风险”。第二份报告于 2017 年 12 月发布,研究了 E3 是否可能导致电压崩溃。研究结果表明,E3 可能导致电压崩溃,但“仅由晚期脉冲或 E3 导致的服务中断将仅限于区域层面,不会引发全国性电网故障。”该研究还得出结论,潜在影响可以减轻。这份关于 E1、E2 和 E3 对架空输电线、变电站和开关站的潜在综合影响的新报告显示,初始 E1 和晚期 E3 脉冲可能会引发区域服务中断,但不会引发全国性电网故障。EPRI 得出结论,“恢复时间预计与其他极端事件导致的大规模电力中断相似,前提是采取针对