任职(续) 贝尔通信研究 (Bellcore)(1999 – 2003 年):高级研究科学家;(1995 – 1999 年):研究科学家:数学和密码学研究组,应用研究。 伯克利(1992 年秋季 – 1995 年 8 月):NSF 数学科学博士后研究员。主持人:Manuel Blum 教授。 IBM TJ Watson 研究中心,纽约霍桑。(1992 年 7 月 – 8 月);(1991 年 6 月 – 9 月);(1990 年 7 月 – 9 月):暑期实习研究职位:分布式算法、密码学。 AT&T 贝尔实验室,新泽西州默里山。(1990 年 5 月 – 7 月)。数学研究中心。暑期实习研究职位:密码学、分布式和并行算法。 Index Technology Corporation,马萨诸塞州剑桥。(1987 – 1989 年)。研究工程师、产品规划、架构和研究组:算法设计。
东北俄亥俄州传媒体协会2025年冬季网络研讨会系列1月8日 - 戴夫·托马什夫斯基(Dave Tomashefski)用柔软的着陆花园在树下种植柔软的着陆花园来充分利用您的树木,这是支持院子里生物多样性的最佳方法之一。加入Meadow City的Dave Tomashefski本地植物托儿所,了解软着陆花园如何支持蝴蝶和飞蛾完成其生命周期(以及更多!)这个研讨会是最大程度地利用树木覆盖物在生长空间中的好处的绝佳机会。作为Meadow City的教育专家,Dave Tomashefski负责托儿所的教育计划和材料。他的礼物是为每个人找到理想的植物!在克利夫兰共同创立了Meadow City之前,Dave在俄亥俄州立大学的土壤,水和环境实验室工作,在那里他还获得了硕士学位。1月22日 - 俄亥俄州后院的Denise Ellsworth Wild Bees许多园丁在看到一个蜜蜂时就知道一个蜜蜂,但是其他400多种将俄亥俄州回家的400多种蜜蜂呢?该计划将重点放在一些最常见的蜜蜂上,包括它们引人入胜的生物学和生活史。我们还将讨论植物选择和景观实践,以支持我们的本地传粉媒介。为什么大黄蜂会振动其机翼肌肉,以中间C的音调?蜜蜂世界中的皇后有多罕见?为什么叶切蜜蜂从叶子和花瓣上切下圆盘?这些本地蜜蜂对授粉和生物多样性有多重要?丹妮丝通过俄亥俄州立大学昆虫学系指导传粉媒介教育计划,她自2012年以来一直担任的职位。在她的扩展和外展工作中,丹尼斯通过各种研讨会,网络研讨会,书面材料和电子资源来支持和教全州养蜂人,农民,园丁和其他人。在进入昆虫学之前,丹妮丝(Denise)在阿克伦(Akron)/广州地区担任农业和自然资源县推广教育家,曾担任园艺,综合有害生物管理和环境教育。除了追逐蜜蜂外,丹妮丝还与丈夫和狗一起沿着塔斯卡拉瓦斯河沿着托斯卡拉瓦斯河沿着拖车小径远足。
John A. Janiszewski DTE 能源公司 One Energy Plaza, 1635 WCB Detroit, MI 48266 亲爱的 Janiszewski 先生: DTE 电力公司应在 2024 年 11 月 12 日之前将随附的听证通知副本邮寄至其电力服务区域内的所有城市、建制村、乡镇和县,以及案件编号 U-18352 和 U-21172 的介入者。送达证明应在 2024 年 11 月 26 日的预审会议之前提交。 DTE 电力公司应在 2024 年 11 月 12 日之前将随附的听证通知刊登在其电力服务区域内的普通报纸上。随函附上出版要求和出版格式的副本。公布宣誓书应于 2024 年 11 月 26 日在预审会议上提交。DTE 电力公司应在 2024 年 11 月 26 日之前向每位提出干预请求的人提供其向委员会提交的拟议证人的书面直接证词和拟议证物的副本。服务证明应于 2024 年 12 月 3 日之前向委员会提交。
• 纯电动汽车 (BEV) 比类似尺寸的内燃机 (ICE) 汽车重约 20%。 • 主要的挑战之一是碰撞管理,以在严重的侧面碰撞载荷下保护电池外壳。 • 与 ICE 相比,BEV 摇臂区域的纵向和横向分布了更多材料,用于吸收能量和防止入侵。
马丁诺夫斯基总长杰出的职业生涯包括两次担任海上指挥,担任密西西比州格尔夫波特的 USCGC RAZORBILL 和纽约州蒙托克的 USCGC RIDLEY 的负责人。其他职务包括:新泽西州开普梅海岸警卫队训练中心连长、学校负责人、部门指挥官和新兵连长;德克萨斯州南帕德里岛海岸警卫队站作战负责人;加利福尼亚州圣地亚哥 USCGC PETREL 中尉和高级军士;关岛马里亚纳海区搜救控制员;马萨诸塞州新贝德福德 USCGC TAHOMA;阿拉斯加州科迪亚克通信站。
技术科学学院,普里斯蒂纳大学的科索夫斯卡米特罗维卡大学,KnjazaMiloša7,38220 Kosovska Mitrovica,塞尔维亚,塞尔维亚(1),MB大学,信息技术系,Prote Mateje Br。21,11111 Beograd,塞尔维亚(2)OrcID:1.0000-0002-6557-4553; 2.0000-0002-1492-7638; 3.0000-0002-6867-7259; 4.0000-0002-2240-3420 DOI:10.15199/48.2024.09.55使用机器学习和数字图像处理摘要对电子废物类型进行分类。本文探讨了深度学习和计算机视觉技术在自动分类和检测电子废物(电子废物)中的应用。开发了基于卷积神经网络(CNN)和更快的R-CNN的系统,用于分析电子废物图像并提取有关设备类型和尺寸的信息。该实验是在三个关键电子废物类别的500个现实世界图像的数据集上进行的 - 冰箱,厨房炉灶和电视。结果证明,使用CNN使用R-CNN的92%的分类精度为92%。所获得的数据可以更精确的废物收集计划。主要结论是,深度学习具有改善电子废物管理系统的巨大潜力。Streszczenie。artykuł十BADA ZASTOSOWANIETECHNIKGłęBokiegoUczenia i widzenia komputerowego do automatycznej klasyfikacji i detekcji elektronicznychnychnychnychnychnychnychnychnychodpadów(e-dodpadów)。opracowany zostaje系统oparty na spotowych siecioch sieciach neuronowych(CNN)i szybszym r-cnn做a andaleizyobrazówe-odpadówe-odpadóworaz wydobycia wydobycia wydobycia wydobycia norlakacji norlage o typie typie o typie typie o typie typie t typie imiarachsprzętu。uzyskane daneumoêliwiająbardziejprecyzyjne planowanie zbieraniaodpadów。该实验是在三个关键类别的E Trantpts-Ryfragerators,厨房炉灶和电视的三个关键类别的数据集上进行的。结果显示,使用CNN使用R-CNN的检测精度为92%,结果表现出92%的高分类精度。主要的结论是,深层教学具有改善电子废物管理系统的巨大潜力。(使用机器学习和数字图像处理的电子废物类型的分类)关键词:电子废物,卷积神经网络,计算机视觉,废物分类。关键字:电子废物,编织神经网络,计算机视觉,废物分类。引言电子废物(电子废物)的财产管理正在随着全球干燥废物量增长而变得越来越多。尽管电子垃圾容器高度有价值用于回收利用,但它也可以包含汞,铅和镉等物质。因此,收集,分类和处理电子废物的开发有效系统至关重要。本文研究了使用图像识别技术提高电子快速管理效率的概念。所考虑的系统是基于通过拍摄废物对象获得的视觉数据的分析。目的是通过简单的用户界面来促进电子废物的识别和分类,从而巩固了智能战斗的无处不在和更轻松的互联网访问。这种方法的核心组成部分是深层神经网络,特别是深层卷积神经网络(CNN)的应用,用于图像分析。这种创新的方法使个人可以通过应用程序或服务器将废物对象的照片发送给收集公司,在这种情况下,将使用图像识别技术自动识别废物类型。第一阶段涉及废物类型分类,为此使用深层卷积神经网络。CNN是一种旨在从图像中提取复杂特征的体系结构,并根据某些标准学会区分它们。该技术可以具有很高的准确性对不同的电子废物类别进行可靠的分类。第二个关键组件是更快的区域卷积神经网络(R-CNN),这是图像中的高级对象检测技术。该网络可从电子废物照片中识别设备类别和尺寸估计。将R-CNN集成到系统中,可以对图像中的废物组件进行更详细的了解,这对于成功的废物管理至关重要。研究结果表明,识别和分类所选的电子废物类别的准确性很高,精度为90-97%。这种准确性确认了所提出的方法的效率,并表明其在现实世界中的潜力。管理电子废物正在成为现代社会和经济的组成部分
电气工程系Tahri Mohamed University,Bechar,Algeria doi:10.15199/48.2024.08.41 ANN ANN方法的SOC估算锂离子电池摘要。充电器或SOC是电动汽车的电池组对汽油量表的类似物。在包括电动汽车(EV)在内的所有电池应用中确定电荷状态至关重要。本文的目标是使用人工神经网络(ANN)估算高容量锂离子电池(LIB)的充电状态(SOC)。这是必要的,因为无法直接测量SOC;取而代之的是,必须使用可测量的电池指标(例如温度,电压和电流)来计算它。可以获得可以在不久的将来预测SOC的准确预测模型。模拟数据集和ANN模型表示同意,表明该模型的强劲性能。Streszczenie。StanNaładowania,Czyli Soc,odpowiednik wskaitnika benzyny w Zestawie akeStawieakumulatoromatorówpojazdu elektrycznego。ustalenie stanunaładowaniaakumulatoromatorówstajesięniezwykle istotne我们wszystkich zastosowaniach,w tym w tym w samochodach elektrycznych(ev)。celem tegoartykułujest wykorzystanie sztucznej sieci sieci neuronowej(ann)do oszacowania stanu stanunaładowania(soc)akumulatora litowo litowo-jonowo o jonowogo om jonowogo opojemności(lib)。开玩笑,poniewaêSocnieMioMnaZmierzyćBezpośrednio; ZamiasttegoNależygoobliczyćNapodstawiemierzalnychparametrówakumulatora,takich jak tempatura,napięcieiprąd。moêliwejest uzyskaniedokładnego模型predykcyjnego,którybędziew stanieprzewidziećsoc wnajbliêszejprzyszłości。SymulowanyZbiórDanychI Model SsnbyłyZgodne,Co wskazuje nawysokąWydajność模型。( Podejście ANN do szacowania SOC baterii litowo-jonowej ) Keywords: Electric Vehicle, State of Charge, Open Circuit Voltage, ANN Słowa kluczowe: Pojazd elektryczny, stan naładowania, napięcie obwodu otwartego, SSN I.简介运输部门正在迅速朝着电动汽车(EV)迈进,这被认为更可靠和高效,并且已经开始在市场上竞争。根据电气化程度,电动汽车包括所有AEV,更多的MEV,PHEVS(插电式混合动力汽车)和HEVS(混合电动汽车)。为电动汽车研发,生产和商业化提供的大量资金来自政府机构,学术机构,商业和公众,以满足对电动汽车的不断增长的需求。电动汽车的规格范围非常广泛。许多技术都是适合的,因为每个应用程序对电动机都有不同的需求[1]。术语“储能系统”(ESS)是指使用机械,化学,电化学和电气方法来存储由各种来源产生的盈余电能的一组设备。尽管每种技术都有自己的优点和缺点,但环境,独立系统运营商,设备制造商,最终用户,监管机构和能源服务提供商都从这些技术中受益。为了尽可能有效地计划存储系统,需要了解两条信息。随着ANN方法的应用,我们的贡献寻求:首先,准确地预测ESS将运行的时间范围内的负载配置文件。第二,使用付费(SOC)估计在计划时间
在科夫斯的典型一天中,有26,000多名居民去上班,需要上学13,000名儿童,约有4,000名学生去大学或TAFE。将参与未付家庭工作的人们进行的42,000次旅行以及与我们6,500家本地企业相关的商品的流动,这加起来,这加起来了很多人和围绕我们城市的商品。这一运动的大部分都发生在我们的道路和街道网络上,这些道路和街道网络不仅充当运输走廊,而且还充当了我们居住,购物,工作和社交的公共空间或地方网络。
