马来西亚近海二氧化碳封存的地质力学可行性分析 A. Haghi 1、S. Otto 1、R. Porjesz 1、J. Formento 1、J. Park 2、H. Gu 2、K. Bt Mohamad 3 1 CGG;2 SKEO;3 PETRONAS 摘要 对深层地质构造中潜在的二氧化碳封存地点进行地质力学筛选是一项巨大的挑战,特别是在沙捞越近海等构造活跃区。在本研究中,我们收集现有日志和井下应力和压力测量值,为该油田三个战略位置的井构建一维力学地球模型。我们绘制了剪应力水平 (SSL) 和压力室 (PR),以评估由于注气引起的断层重新激活或压裂导致二氧化碳通过盖层泄漏的风险。研究区域目前的应力状态以走滑状态为特征,与附近西巴兰线观测到的运动一致。利用世界应力图数据库,我们基于研究区域内11口海上钻井的142个井眼崩裂数据,确定了平均SH方向为N112°(±19°),这与东南东向巽他板块的绝对运动方向一致。根据本研究中改进的评分方法,我们发现SSL和PR值处于可接受至非常好的范围内。然而,摩擦平衡失效分析得出了PR的下限。本文概述的新型地质力学筛选方法提供了一种快速有效的方法,可以在进行详细表征之前识别适合CCS的储层。
冶金工程涉及将岩石和矿物质转化为使我们生活更美好的金属和矿物产品的研究,设计,实施和改进。Metallurgical engineering students take courses in: particle separation technology, which focuses on particle separation, processing, and recycling, and includes particle characterization, comminution, size separation, flotation, coal preparation, remediation of nuclear materials, automatic control and process engineering of particles including metal powders, energy-related minerals, pigments, and ceramics;化学冶金术,重点是去除金属,加工和回收到纯化的金属中,包括异质反应动力学,运输现象,计算机建模,浸出,溶液纯化,离子纯化,溶剂萃取,降水,降水,烘焙,烘焙,还原,还原,冶炼,冶炼,铁,铁和钢材;和物理冶金,重点是金属铸造,形成,连接和金属特性评估和优化,包括相变,粉末冶金,金材术,功能分级的材料,复合材料,磁性材料,薄膜加工,疲劳,疲劳,正电子,快速固化,快速固化,金属失效分析和腐蚀。(有关其他信息,请参阅http://www.mse.utah.edu/。)
ME 672 & L 复合材料制造 ME 673 工程材料回收 ME 680 & L 激光材料加工与设计 ME 702 能源与可持续性 ME 709 损伤生物力学 ME 710 机械工程师的六西格玛 ME 719 基本燃烧理论 ME 725 机械振动与声学 ME 728 高级电子材料 ME 729 & L 计算机辅助机械系统分析 ME 730 工程系统建模 ME 731 热交换器的高级设计 ME 737 机器人与控制 ME 739 高级机械设计 ME 745 热系统设计 ME 747 基于微计算机的机械系统 ME 749 FEM 在机械工程中的应用 ME 750AE 流体流动与热传递的计算建模 ME 750AF 自动驾驶汽车 ME 750AG 室内空气污染与模拟 ME 750AI 材料相变 ME 752 失效分析方法与工具 ME 753 能源系统的先进材料 ME 758 非线性控制机电系统 ME 760 断裂力学 ME 762 聚合物复合材料 ME 775 微机电系统简介 ME 782 CFD 和传热的工程应用
课程编号 标题 学分 课程作业 (24 学分) # 选修课 1 (冶金学基础) MS5050 高级物理冶金学 3 MS5500 材料变形行为 3 MS5510 应用相平衡和相变 3 MS5520 工程合金 2 MS5530 腐蚀科学与工程 3 MS5540 材料工程中的扩散分析 3 MS5330 微观结构在材料选择中的作用 2 选修课 2 (材料加工) MS5550 焊接工艺 3 MS5470 焊接冶金学和增材制造 3 MS5040 材料热机械加工 3 MS5560 铸造和凝固 3 MS5130 粉末冶金制造 3 MS5460 金属增材制造 3 选修课 3 (材料测试与特性) MS5570 材料结构与特性 3 MS5020 电子显微镜 3 MS5280 材料磨损和摩擦学 1 MS5580 材料无损检测 2 MS5590 冶金失效分析 2 选修课 4(先进材料) MS5100 复合材料 3 MS5450 高熵材料 1 MS5300 先进制造的微观结构设计 3 选修课 5(计算材料工程) MS5140 材料科学中的计算方法简介 3 MS5480 材料科学中的机器学习和数据分析 3 学位论文(24 学分) MS5015 论文 – 第一阶段 12 MS5025 论文 – 第二阶段 12 总学分 48 # 所有课程均为选修课。您可以从五个选修课中任意选修一门课程,总计 24 学分。
1. Glenske K、Donkiewicz P、Köwitsch A 等人。金属在骨再生中的应用。Int J Mol Sci。2018;19(3):1-32。2. Smeets R、Precht C、Hahn M 等人。含银聚硅氧烷涂层钛种植体的生物相容性和骨整合:猪体内模型。Int J Oral Maxillofac Implants。2017;32(6):1338-1345。3. Witte F。可生物降解镁种植体的历史:综述。Acta Biomater。2010;6(5):1680-1692。4. Triantafyllidis GK、Kazantzis AV、Karageorgiou KT。不锈钢 316L 骨科板植入物因交替出现疲劳和解理退相干而过早断裂。工程失效分析。2007;14(7):1346-1350。5. Amel-Farzad H、Peivandi MT、Yusof-Sani SMR。不锈钢骨科植入物体内腐蚀疲劳失效及多种不同损伤机制。工程失效分析。2007;14(7):1205-1217。6. Singh Raman RK、Jafari S、Harandi SE。镁合金在生物植入物应用中的腐蚀疲劳断裂:综述。工程断裂力学。2015;137:97-108。7. Maksimkin AV、Senatov FS、Anisimova N 等人。用于骨缺损置换的多层多孔超高分子量聚乙烯支架。Mater Sci Eng C。2017;73:366-372。8. Senatov FS、Kopylov AN、Anisimova N、Kiselevsky MV、Maksimkin AV。基于超高分子量聚乙烯的纳米复合材料作为受损软骨的替代材料。Mater Sci Eng C。2015;48:566-571。9. Senatov FS、Gorshenkov MV、Tcherdyntsev VV 等人。基于超高分子量聚乙烯的生物相容性聚合物复合材料用于软骨缺损置换的可能性。J Alloys Compd。2014;586:544-547。10. Kurtz S 编辑。超高分子量聚乙烯生物材料手册 – 全关节置换和医疗器械中的超高分子量聚乙烯。第三版。阿姆斯特丹:Elsevier Inc.;2016。11. Brach Del Prever EM、Bistolfi A、Bracco P、Costa l。UHMWPE 用于关节置换术 - 过去还是未来?J Orthop Traumatol。2009;10(1): 1-8。12. Senatov FS、Niaza KV、Salimon AI、Maksimkin AV、Kaloshkin SD。模拟骨小梁组织的结构化 UHMWPE。Mater Today Commun。2018;14:124-127。13. Braun S、Sonntag R、Schroeder S 等人。髋臼置换术的背面磨损。Acta Biomater。2019;83:467-476。14. Cowie RM、Briscoe A、Fisher J、Jennings LM。 UHMWPE-on-PEEK OPTIMA 的磨损和摩擦。J Mech Behav Biomed Mater。2019;89: 65-71。15. Abdelgaied A、Fisher J、Jennings LM。全膝关节置换术临床前磨损模拟的综合实验和计算框架。J Mech Behav Biomed Mater。2018;78:282-291。16. Zeman J、Ranusa M、Vrbka M、Gallo J、Krupka I、Hartl M。全髋关节置换术生命周期磨合期 UHMWPE 髋臼杯蠕变变形。J Mech Behav Biomed Mater。2018;87:30-39。
拟议的小型研讨会让您可以选择现场或在线参加亲爱的同事和作者。第六届结构完整性和耐久性国际会议(ICSID'2022)组委会邀请所有对结构完整性感兴趣的人参加,目的是提高工程结构、部件及其相关材料的安全性和性能。本次特别小型研讨会“极端油气环境下的材料挑战”将重点关注石油和天然气工业领域的技术挑战。ICSID'2022 邀请来自工业界、学术界和政府的科学家和工程师就技术应用、研究和新解决方案进行出色的经验和想法交流。特别欢迎在以下领域做出贡献:针对具有挑战性的油气环境的材料选择(即 H 2 S、CO 2、HPHT……);油气生产和功能应用中的先进材料,先进的耐腐蚀合金(例如超级不锈钢、镍基合金);腐蚀、环境辅助开裂和材料降解(CO 2 、H 2 S、Cl-、HE 等);可靠性和材料故障;恶劣环境和高温高压下的高强度和抗断裂材料;计算和分析模型;用于石油和天然气生产的新型和先进耐腐蚀合金以及案例历史等。我们借此机会诚挚地邀请您参加本次小型研讨会,现场或在线提交论文。我们敦促您不要错过这一历史性事件,并以您的极大热情和贡献积极加入我们。全文将在 Proceedia Structural Integrity、PSI 的 ICSID 2022 会议论文集上发表:https://www.journals.elsevier.com/procedia-structural-integrity 在 ICSID 2022 上发表的选定全文的作者将被邀请提交其论文的扩展版本,以发表在《工程失效分析》特刊上。如果您需要更多信息,请联系组委会 https://icsid2022.fsb.hr/ 和/或小型研讨会组织者。希望在金秋时节在克罗地亚杜布罗夫尼克见到您,并希望您在即将举行的活动中留下难忘的回忆。
链接:https://www.webofscience.com/wos/author/record/785325 1. Scientific Reports,自然研究期刊 2. Acta Materialia,爱思唯尔出版物 3. Materials Science and Engineering A,爱思唯尔出版物 4. Materials and Design,爱思唯尔出版物 5. Tribology Transitions,STLE 和 Taylor & Francis 出版物 6. Journal of Material Processing Technology,爱思唯尔出版物 7. Journal of Materials Science,Springer 出版物 8. Wear,爱思唯尔出版物 9. Journal of Alloys and Compounds,爱思唯尔出版物 10. Journal of Materials Science & Technology,爱思唯尔出版物 11. Philosophical Magazine,Taylor & Francis 出版物 12. Journal of Materials Research,美国材料研究学会 13. Journal of Materials Engineering and Performance,Springer 出版物 14. Metallurgical and Materials Transactions A,Springer 出版物 15. Materials Characterization,爱思唯尔出版物 16. Journal of Composite Materials, SAGE 出版物 17. 《材料快报》,爱思唯尔出版物 18. 《失效分析与预防杂志》,施普林格出版物 19. 《印度金属研究所转型》,施普林格出版物 20. 《材料科学与技术》,泰勒弗朗西斯出版物 21. 《测量》,爱思唯尔出版物 22. 《国际陶瓷》,爱思唯尔出版物 23. 《低温学》,爱思唯尔出版物 24. 《微米》,爱思唯尔出版物 25. 《金属间化合物》,爱思唯尔出版物 专业经验
聚合物复合材料由于其出色的强度和耐用性(相对于重量而言)而越来越多地用于航空航天应用。本书的修订版总结了航空航天结构复合材料部件的设计、制造和性能方面的最新研究和发展。它详细讨论了传统和先进聚合物复合材料的设计、建模和分析,深入了解了机械性能和长期性能,例如强度、刚度、冲击、抗爆和疲劳。本书还包含有关飞机特定主题的附加章节,例如雷击保护、损伤容限和适航性。第一部分包括关于 2D 和 3D 编织复合材料的建模、结构和行为的章节;用于复合材料和部件的制造工艺;层压板的屈曲和抗压强度;以及复合材料的制造缺陷。第二部分讨论了复合材料在航空航天结构设计中的性能,包括以下章节:结构元件刚度和强度建模;单轴和多轴载荷下的疲劳;断裂力学;冲击强度;耐撞性;螺栓接头设计和失效分析;航空航天复合材料对温度和湿度的响应;爆炸响应;修复;损伤的无损评估;结构健康监测 (SHM);适航性;以及认证。人们普遍认为,设计耐损伤结构的当前做法是利用复合材料的异质性,并配置材料,使其能够承受某些类型的损伤并自然阻止其传播。然而,这是一种被动方法,因此它有其自身的局限性。另一方面,复合材料的 SHM 技术的发展是一项新兴技术,它似乎可以通过确保早期检测和监测损坏来提供提高可靠性和安全性的方法。预测能力也正在出现,这些能力能够估计具有已知损坏状态的复合结构的残余刚度和强度。如果我们首先开发并协同结合新功能,以实现在役损伤检测和表征、健康监测和结构预测,那么设计抗损伤和耐损伤复合结构的新策略可能会成为可能。贯穿这些的线索确保飞机系统的结构可靠性将大大增强对其安全性的信心,降低过早出现故障的概率,并降低运行和维护成本。
短纤维增强复合材料进气歧管的爆破试验 S. Curioni、T. Lanzellotto、G. Minak、A. Zucchelli、D. A. Caridi DIEM Alma Mater Studiorum – Università di Bologna Viale Risorgimento 2, 40136 Bologna Magneti Marelli Powertrain S.P.A.Via del Timavo 33, 40136 Bologna 电子邮件:tommaso.lanzellotto@unibo.it 摘要 考虑了由短玻璃纤维增强塑料制成的汽油发动机进气歧管,并研究了其在爆破试验过程中的机械行为。这项研究的目的是研究由于制造工艺而导致的材料各向异性和振动焊接参数过程对整体部件阻力的影响。关键词:短纤维复合材料,爆破试验,失效分析 引言 汽车行业对低密度材料的需求很高,因为发动机小型化、节能和降低成本的政策。复合材料具有这种特性,同时确保良好的机械强度和足够的耐久性;此外,它们还能显著降低噪音和吸收振动。这些材料取代了许多部件中的金属(特别是铝),例如进气歧管、空气滤清器外壳、正时齿轮和散热器风扇。特别是在进气应用中,通过更光滑的进气歧管内表面来提高性能。事实上,很容易获得低粗糙度值(通过模具抛光从 Ra 5 到 Ra 1.6 再到 0.4)(图 1a-b)。所研究的部件是汽车发动机中使用的进气歧管 (AIM)。其主要作用是将空气输送到发动机气缸中,以实现最佳燃烧。具体来说,AIM 功能包括更换每个气缸中的工作流体、用过滤空气填充以及减少在重新填充和排放阶段由压力波引起的噪音。组件设计的关键问题是重量轻、机械强度足够、耐用性和尽可能减小的整体尺寸 [1]。AIM 制造的传统解决方案基于铝合金铸造;然而,
参考文献 [1] ASE Group,什么是 2.5D?[视频],https://ase.aseglobal.com/en/technology/advanced_25dic (2022) 于 2022 年 7 月 16 日在 https://coms.aseglobal.com/marcom/video/25d-ic 时间戳 1:20 访问。 [2] A. Gupta、Z. Tao、D. Radisic、H. Mertens、OV Pedreira、S. Demuynck、J. Bömmels、K. Devriendt、N. Heylen、S. Wang、K. Kenis、L. Teugels、F. Sebaai、C. Lorant、N. Jourdan、B. Chan、S. Subramanian、F. Schleicher、A. Peter、N. Rassoul、Y. Siew、B. Briggs、D. Zhou、E. Rosseel、E. Capogreco、G. Mannaert、A. Sepúlveda、E. Dupuy、K. Vandersmissen、B. Chehab、G. Murdoch、E. Altamirano Sanchez、S. Biesemans、Z. Tőkei、ED Litta 和 N. Horiguchi,CMOS 埋入式电源轨集成扩展到 3 nm 节点以上,SPIE (2022)。 [3] HSP Wong、K. Akarvardar、D. Antoniadis、J. Bokor、C. Hu、T.-J。 King-Liu、S. Mitra、JD Plummer 和 S. Salahuddin,IEEE 论文集,108, 478 (2020)。 [4] CD Hartfield、TM Moore 和 S. Brand,《微电子故障分析:案头参考》,第 7 版,T. Gandhi 编辑,ASM International (2019)。 [5] BAJ Quesson、PLMJ 诉 Neer、MS Tamer、K. Hatakeyama、MH 诉 Es、MCJM 诉 Riel 和 D. Piras,Proc.SPIE (2022)。 [6] A. Gu、M. Terada 和 A. Andreyev,《计算机分层成像与 3D X 射线显微镜在电子故障分析中的简要比较》,Carl Zeiss Microscopy GmbH [白皮书],(2022 年)。[7] J. Lehtinen、J. Munkberg、J. Hasselgren、S. Laine、T. Karras、M. Aittala 和 T. Aila,《Noise2Noise:无需清洁数据即可学习图像恢复》,《第 35 届国际机器学习会议论文集》,D. Jennifer 和 K. Andreas 编辑,第 2965 页,PMLR,《机器学习研究论文集》(2018 年)。[8] M. Andrew、R. Sanapala、A. Andreyev、H. Bale 和 C. Hartfield,《使用高级算法增强 X 射线显微镜》,《显微镜与分析》,Wiley Analytical Science(2020 年)。 [9] A. Gu、A. Andreyev、M. Terada、B. Zee、S. Mohammad-Zulkifli 和 Y. Yang,载于 ISTFA 2021,第 291 页(2021 年)。[10] IEEE,《2021 年国际设备和系统路线图》,[白皮书],(2021 年)。[11] E. Sperling,《先进封装中的变化制造麻烦》,载于《半导体工程》,[白皮书],(2022 年)。[12] T. Rodgers、A. Gu、G. Johnson、M. Terada、V. Viswanathan、M. Phaneuf、J. de Fourestier、E. Ruttan、S. McCracken、S. Costello、AM Robinson、A. Gibson 和 A. Balfour,载于 ISTFA,第 291 页(2022 年)。 [13] B. Tordoff、C. Hartfield、AJ Holwell、S. Hiller、M. Kaestner、S. Kelly、J. Lee、S. Müller、F. Perez-Willard、T. Volkenandt、R. White 和 T. Rodgers,《Applied Microscopy》,50,24 (2020)。[14] M. Kaestner、S. Mueller、T. Gregorich、C. Hartfield、C. Nolen 和 I. Schulmeyer,《CSTIC,中国》(2019 年)。[15] T. Schubert、R. Salzer、A. Albrecht、J. Schaufler 和 T. Bernthaler,《组合光学显微镜 - FIB/SEM 对汽车车身部件的失效分析》,[白皮书],(2021)。[16] JH Li、QL Li、L. Zhao、JH Zhang、X. Tang、LX Gu、Q. Guo、HX Ma、Q.Zhou, Y. Liu, PY Liu, H. Qiu, G. Li, L. Gu, S. Guo, C.-L. Li, XH Li, FY Wu 和 YX Pan, Geoscience Frontiers, 13 (2022)。[17] V. Viswanathan、L. Jiao 和 C. Hartfield,2021 年 IEEE 第 23 届电子封装技术会议 (EPTC),第 80 页 (2021)。[18] R. Hollman,泛太平洋微电子研讨会 (2019)。[19] M. Tuček、R. Blando、R. Váňa、L. Hladík 和 JV Oboňa,国际失效分析物理学 (IPFA),新加坡 (2020)。