摘要:当需要用概率方法评估城市隧道与邻近结构的相互作用时,计算能力是数值模型面临的重要挑战。因此,即使样本数量较少,智能采样算法也可以成为获得结果领域更好知识的盟友。无论如何,当采样有限时,风险评估也会受到限制。在这种情况下,人工智能 (AI) 可以通过插入结果并快速生成更大的样本来填补风险分析中的一个重要空白。人工智能算法的目标是找到一个近似函数(也称为替代模型),该函数可以重现原始数值模拟行为并且可以更快地进行评估。该函数是通过在智能采样技术获得的特殊点执行多次模拟来构建的。本文使用了一个假设案例来验证方法建议。它涉及一条深度约为三倍直径的隧道的连续挖掘,与一座七层楼的建筑物相互作用。首先,对三维数值模型 (FEM) 进行确定性求解,然后对其域和网格进行细化。之后,从 FEM 软件中以数值方式获得另外 170 个解决方案,并对所涉及的随机变量进行策略性抽样。接下来,基于 31 种人工智能技术,评估哪些变量对于预测周围建筑物地基元件的垂直位移量级最重要。然后,一旦选出了最重要的变量,就再次对 31 种人工智能技术进行训练和测试,以确定 R 平方最小的技术。最后,使用这种最佳拟合算法,可以使用大量样本(大小约为 10 7 )来计算失败的概率。这些样本用于说明简单蒙特卡罗抽样 (MC) 和拉丁超立方抽样 (LHS) 的收敛性。本文的主要贡献是方法论上的;因此,该新程序可以汇总到与隧道相关问题相关的最先进的风险评估方法中。
3.1.1 单次飞行失败概率 ............22 3.1.2 裂纹检测概率 ..............24 3.1.3 等效初始缺陷尺寸 ..............25 3.1.4 每次飞行的最大施加应力 ...........28 3.1.5 检测概率曲线 .............30 3.2 PROF 软件 .。。。。。。。。。。。。。。。。。。。。。。。。.31 3.2.1 PROF 软件方法 .............31 3.2.2 PROF 示例问题 ................34 3.3 显式蒙特卡洛方法 ................40 3.3.1 分析例程 .................。。。。。。。40 3.3.2 蒙特卡罗程序的 SFPOF 和 PCD 估计 43 3.3.3 重要性抽样修改 ......44 3.3.4 CP4、CP6、CP7 和 CP7ext 的蒙特卡罗结果 ..45
3.1.1 单次飞行失败概率 ............22 3.1.2 裂纹检测概率 ..............24 3.1.3 等效初始缺陷尺寸 ..............25 3.1.4 每次飞行的最大施加应力 ...........28 3.1.5 检测概率曲线 .............30 3.2 PROF 软件 .。。。。。。。。。。。。。。。。。。。。。。。。.31 3.2.1 PROF 软件方法 .............31 3.2.2 PROF 示例问题 ................34 3.3 显式蒙特卡洛方法 ................40 3.3.1 分析例程 .................。。。。。。。40 3.3.2 蒙特卡罗程序的 SFPOF 和 PCD 估计 43 3.3.3 重要性抽样修改 ......44 3.3.4 CP4、CP6、CP7 和 CP7ext 的蒙特卡罗结果 ..45