德国劳氏船级社指南允许以两种完全不同的方式计算载荷谱。在所谓的“简化载荷谱”的情况下,载荷分量的最大波动幅度为额定风况下该分量纯气动载荷平均值的±75%,以及与质量相关的载荷的叠加。GL 指南中允许的第二种方法是根据时间域中的模拟结果计算载荷谱。对于多个平均风速,计算载荷分量的时间相关特性时要考虑风的自然空间湍流。使用雨流法将它们转换为载荷谱。在参数研究中,根据这两种方法计算载荷谱并进行比较。计算适用于额定功率为 100 kW 至 2000 kW、具有两个和三个叶片的涡轮机,以及失速控制和俯仰控制涡轮机。通过 1 P 疲劳等效载荷谱将计算出的载荷谱与每个载荷谱进行比较。介绍了各个参数的影响,以及简化载荷谱的有效性。
风力涡轮机 (WT) 利用风能发电。因此,对风力涡轮机的控制和经济高效的运行进行了研究。控制系统具有使用寿命长、能量输出最大和安全性高等特点。在控制方法和控制策略方面,讨论了限制和优化能耗的各种方法。风力发电的整合可能会损害瞬态系统的稳定性。异步感应发电机无法处理风能应用中产生的无功功率。WT 通常设计为可承受恶劣天气,但不能承受高速度或高扭矩。强大的气动扭矩或转速能够破坏 WT 叶片。为了防止这种情况发生,WT 始终具有一个切断速度,超过此速度时,涡轮机将通过制动器停止运转。当过大的风速危及涡轮机的安全时,WT 会采用一系列控制技术。因此,所有 WT 均采用功率控制方法构造。这可以调节俯仰和失速。WT 可以应用被动或主动失速控制。因此,本研究分析了相关技术、风力涡轮机的维护、成本、多种类型的风力涡轮机控制器以及风能行业特有的负面影响和障碍。