传输线脉冲(TLP)绘制在ESD事件中测试设备在当前和时间域中的行为。脉冲宽度和上升时间可以很容易地更改,但通常,测试涉及1至5-ns上升时间和100 ns脉冲宽度的矩形电流脉冲。TLP图提供了重要的参数,分解电压和夹具的动态电阻。如第4.8.6节所述,如果数据表中未明确提供夹紧电压,则可以从TLP图得出夹紧电压。从ESD2CANFD24数据表中显示了一个示例。对于此设备,以16-A为单位,夹紧电压估计为36-V。该设备确实会体验到Snap-back,这是一种用于降低ESD事件中总体电压下降的技术。由于ESD2CANFD24是双向二极管,因此正和负TLP图几乎相同,单向二极管并非如此。
摘要:带有扭矩电动机的现代直接驱动和高速旋转台非常适合所有处理和组装应用,这些应用需要最短的索引时间和浮动的定位。以下论文致力于研究,设计和优化由气动能量引起的创新桌夹紧系统(用于精确定位的制动器),以6 bar的最大夹紧压力工作。上述应用的挑战与开发能够在数千nm范围内提供最大切向扭矩(夹紧螺母)的解决方案有关,而无需利用高压液压能的使用。提出的解决方案的优化是基于应力的精确计算,以进行疲劳评估和夹具的弹性变形,以便设置交配部分之间的正确公差。最终,为了调整数值模型而进行了实验活动,然后将其用于验证提出的设计解决方案。
图1。各种石墨烯纳米力学谐振器。(a)双重夹紧谐振器。(b)完全夹紧的谐振器。(c)带有通向通道的完全夹紧谐振器。(d)使用SU-8聚合物的其他层完全夹紧谐振器。(e)蹦床形的谐振器。(f)H形谐振器。(g)单独夹紧谐振器。(h)三个双重夹紧的谐振器串联。(i)哑铃形的谐振器,中间有一个排气通道。(J)大量的鼓声谐振器。(k)语音晶体通过将悬浮的石墨烯膜变成周期性图案。(l)语音晶体将石墨烯薄片转移到预制的立柱阵列中。(a)经许可复制。[19] 2011年版权所有,施普林格。(b)经许可复制。[57]版权所有2018,美国化学学会。(c)根据创意共享CC-BY国际许可证的条款复制。[61]版权所有2020年,作者,由Springer Nature出版。(d)经许可复制。[26]版权所有2013,施普林格。(e)根据创意共享CC-BY国际许可证的条款复制。[64]版权所有2019,作者,由施普林格自然出版。(f)经许可复制。[65]版权所有2015,美国化学学会。(g)经许可复制。[66]版权所有2012,施普林格。(h)根据创意共享CC-By International许可证的条款复制。[23]版权所有,作者,由美国国家科学院出版。(i)根据创意共享CC-NC-ND国际许可证的条款复制。[67]版权所有2021,作者,由美国化学学会出版。(J)经许可复制。[68]版权所有2011,施普林格。(k)根据创意共享CC-BY国际许可证的条款复制。[35]版权所有2021,作者,由美国化学学会出版。(l)经许可复制。[36]版权所有2021,美国化学学会。
在 ESC/BSG 系统中,冷却气体(氦气)的漏流被测量为夹紧性能的标准:大量的 BSG 漏流意味着晶圆未正确夹紧,因此冷却气体未到达晶圆。相反,少量的漏流代表晶圆夹紧良好且冷却效率高。在这种情况下,20 sccm 或以上的氦气流量代表夹紧彻底失败以及工具故障。图 2 显示在“A”和“B”型载体上制备的样品晶圆的冷却气体漏流。在所有施加电压下,弯曲程度较高的晶圆的 BSG 流量最高,漏流值已达到最大值 20 sccm。但是,只要背面冷却气体压力较低,较高电压条件就会消除弯曲对 BSG 流量的影响。换句话说,需要将 BSG 压力降低至约 10 Torr 以下才能夹住弯曲的晶圆,这会导致背面冷却系统的边缘性更严格,并且等离子蚀刻等高温工艺中晶圆过热的可能性更高。
两类零件需要机械或真空夹紧,如图 6A 或 6B 所示。真空夹紧用于尽可能降低工具复杂性。但是,有些情况下需要机械夹紧来固定零件。在这两种情况下,都使用可拆卸手柄手动操作装满零件的托盘。手柄锁定到位并将操作员与热量隔离。每种托盘类型都有一个配套的加热底座,安装在粘合机加热器台上。从一种零件类型切换到另一种零件类型是通过更换底板并在粘合机上加载另一个程序来实现的。工具设计旨在确保无需调整 EFO 棒,从而最大限度地缩短转换时间。
脚踏板非常适合预夹紧或作为机械切割线指示器。调节旋钮可无级调节夹紧压力(最小 200/最大 1100 daN)和压力表。假夹板适合精细工作。坚固的前台由压铸铝制成,配有不锈钢台面。(型号 5560 LT:带气台)。坚固的压铸机架结构可吸收切割过程中的力。此外,非常实用:堆叠角和脚轮便于运输。
修整:为了获得最佳性能,应在最初和定期对切片刀片进行修整。使用合适的修整棒,可以去除切片刀片上先前的切割屑和金属污迹。经过适当调理的刀片切割速度更快,使用寿命更长。建议以机械方式使用修整棒,以避免刀片扭曲和碎裂。修整速度应在相对较低的负载(<100 克)和低速(<100 rpm)下降低。夹紧:适当夹紧样品,使样品在切割过程中不会移动。对于脆性样品,使用 Porometric 安装垫夹紧样品以吸收操作产生的振动。在切割结束时减少脆性样品的负载(减少切割结束时的断裂)。切割:在刀片达到所需速度后开始切割,然后缓慢施加负载。调整样品方向,使切割通过最小的横截面。法兰:使用最大的合适刀片法兰,以防止刀片变形。润滑剂:DIACUT 建议使用水基切削液,但也可采用酒精基切削液
化学交联能够快速识别 RNA-蛋白质和 RNA-核酸分子间和分子内相互作用。然而,目前尚无方法能够位点特异性和共价交联 RNA 内两个用户定义的位点。在这里,我们开发了 RNA-CLAMP,它能够位点特异性和酶促交联(夹紧)RNA 内两个选定的鸟嘌呤残基。分子内夹紧会破坏正常的 RNA 功能,而随后对交联剂进行光裂解会恢复活性。我们使用 RNA-CLAMP 通过光裂解交联剂夹紧 CRISPR-Cas9 基因编辑系统的单向导 RNA (sgRNA) 内的两个茎环,完全抑制编辑。可见光照射会裂解交联剂并以高时空分辨率恢复基因编辑。设计两种对不同波长的光有响应的光裂解接头,可以在哺乳动物细胞中实现基因编辑的多路复用光激活。这种光激活的 CRISPR-Cas9 基因编辑平台受益于无法检测的背景活动,提供激活波长的选择,并具有多路复用功能。
密闭空间支撑系统 76 BTRENCHSAFE® 地面挖掘和沟槽系统 77 BTRENCHSAFE® 救援/回收吊艇架套件 79 BTRENCHSAFE® 铝制设备储物箱 79 BTRENCHSAFE® 出入支撑平台 80 BTRENCHSAFE® 梯子通道防坠落柱套件 81 BTRENCHSAFE® 铝制重型梯子 81 BTRENCHSAFE® 铝制交叉走道 82 BTRENCHSAFE® 铝制可调式夹紧护栏 83 BTRENCHSAFE® 可调式夹紧护栏储物架 83 BTRENCHSAFE® 护栏用钢制屏障网 84 BTRENCHSAFE® 移动式锚固立方体 (MAC) 85