Yujie Ding,美国利哈伊大学,主席 Weili Zhang,美国俄克拉荷马州立大学,替补主席 Jerry Chen,美国麻省理工学院林肯实验室 Nils Fernelius,美国空军研究实验室 Manfred Helm,德国德累斯顿-罗森多夫研究中心 Iwao Hosako,日本国立信息通信技术研究所 Hiromasa Ito,日本理化学研究所 Peter Jepsen,日本理工大学丹麦,丹麦 Thomas Kleine-Ostmann,德国联邦物理技术研究院 Ajay Nahata,Univ.美国犹他州 Tsuneyuki Ozaki,国家科学研究所加拿大科学研究中心 Ci-Ling Pan,Natl.清华大学,中国 石伟,NP Photonics,Inc.,美国 David Zimdars,Picometrix,LLC,美国
广告索引 Advertisement Index P141 天津大学建筑设计规划研究总院有限公司 封底 北京《风景园林》杂志社有限公司 P142 上海水石景观环境设计有限公司 封二、P1 深圳市北林苑景观及建筑规划设计院有限公司 P143 深圳奥雅设计股份有限公司 封三 北京北林地景园林规划设计院有限责任公司 P144 深圳市蕾奥规划设计咨询股份有限公司
crispr-cas3:以与CRISPR-CAS9相同的方式切割双链DNA,但CRRNA(指南)识别顺序很长
注意:A70) 在索阿韦 (Soave) 乘坐巴士前往维罗纳。从 Stra 继续前往 S.Bonifacio A58) 从 Soave 继续前往 San Bonifacio A80) 乘坐 Soave 巴士前往 San Bonifacio
集成的光子芯片逐渐成为信息传输和处理的重要选择,其中集成密度将扮演与综合电路中见证的越来越重要的作用。迄今为止,在制管机上硅晶片已经与低串扰的密集整合做出了巨大的效果,尽管在新兴的二氯甲甲虫在启用锂岩岩(LNOII)平台中仍然非常具有挑战性。在这里,我们报告了一种利用Floquet-Mode-Index调制的策略,以实现宽带零串扰,对LNOI芯片的其他性能指标的影响最小。零串扰的潜在物理学归因于floquet quasienergy的崩溃,这是通过超速频道低cros刺传输的实验性验证的,其多余的损失低。此外,我们在紧凑的LNOI波导阵列中展示了宽带八通道光传输,与传统的波导阵列相比,宽带八通道阵列显示出优势。我们的工作是提高片上光子电路的集成密度的另一种方法,为有希望的LNOI平台中的密集波导应用开辟了不同的可能性。
人工智能在过去的几十年里,人工智能取得了巨大的进步,如今它有望带来更好、更准确的医疗保健,增强国家安全,改善交通运输和更有效的教育,这些只是其中的几个好处。为确保美国在人工智能领域继续保持全球领导地位,近一年前,白宫公布了美国人工智能计划,即我们国家的人工智能战略,该计划在过去一年中取得了重大进展。首先,该计划优先投资人工智能研发,正如总统的 2020 财年预算请求所示,其中包括近 10 亿美元的非国防人工智能研发。总统 2020 财年预算的网络和信息技术研究与发展计划 (NITRD) 补充文件中对这些人工智能投资进行了详细的逐机构细分,这是首次对非国防人工智能研发投资进行此类报告。这一报告流程为跟踪美国未来人工智能研发支出提供了重要的机制和基准。 《2016-2019 年人工智能研发进展报告》显示了联邦政府在人工智能领域的投资广度和深度,这些投资正在改变该领域的现状。这些投资集中在政府 2019 年 6 月发布的《国家人工智能研发战略计划》中概述的关键战略重点领域。有影响力的研发投资包括国防高级研究计划局 (DARPA) 的 20 亿美元 AI Next 运动(2018 年 9 月);美国国家科学基金会与国土安全部、交通部、退伍军人事务部和美国农业部 (USDA) 合作启动国家人工智能研究机构计划(2019 年 10 月);美国国家海洋和大气管理局发布的人工智能战略(2019 年 11 月);美国国立卫生研究院的数据科学战略计划(2018 年 6 月);以及国防部 (DOD) 联合人工智能中心的建立(2018 年 6 月)。为了确保联邦在人工智能研发方面的活动得到强有力的协调,白宫特许成立了人工智能特别委员会(2018 年 5 月),该委员会定期开会监督和确定联邦在人工智能方面的研发活动的优先顺序。其次,人工智能计划正在释放联邦资源用于人工智能研发,包括改善公众获取高质量联邦数据的渠道,从而推动更多的人工智能研究和测试。为了收集公众对这一过程的意见,白宫发布了关于联邦人工智能研发和测试数据和模型的信息请求(2019 年 7 月)。这些反馈现在被用于寻求增加联邦数据和模型的访问和使用机会,同时保护安全、保密和机密性。第三,该计划正在消除人工智能创新的障碍。2020 年 1 月 13 日,白宫就向联邦机构提出的关于管理私营部门人工智能开发和使用的监管和非监管政策的拟议指导意见征询公众意见。最终确定后,该指导意见将确保各机构在监管由人工智能赋能或推动的技术和工业部门之前,考虑减少人工智能开发和采用障碍的方法。白宫的指导意见草案还为支持美国创新的人工智能应用管理制定了政策原则,同时适当保护隐私、公民自由和美国价值观,并允许采取针对特定行业和应用的方法。这些原则促进了可信赖的人工智能的发展,并要求监管机构在考虑与人工智能相关的任何行动时考虑公平性、透明性和安全性。
通过使用RAPD(随机扩增的多态性DNA)和ISSR(简单序列重复序列重复序列)进行了10种不同的Grewia optiva家族之间的多样性分析。Grewia Optiva家族是由从喜马al邦(印度)的各个地区收集的种子养育的,并根据形态学参数选择。分别使用15个RAPD和20个ISSR引物和9个RAPD和12个ISSR引物显示放大。9个RAPD引物显示出68.96%的多态性,12个ISSR引物显示出71.25%的多态性。使用NTSYSPC Ver.2.02H的Sahn模块生成相似性矩阵和树状图。jaccard的相似性矩阵显示了与RAPD引物之间的“ SO-7”和“ SO-3”之间的最大相似性系数为0.88。对于ISSR,系数值范围为0.52至0.80。树状图在更大程度上也揭示了相似的结果,在Grewia Optiva收集的10个家族中发现的最大相似性在“ SO-7”和“ SO-3”的RAPD引物之间为88%,与ISSR的“ SO-7”和“ SO-3”之间的“ SO-7”和80%。RAPD和ISSR在10种不同基因型的Grewia optiva中有效揭示了多态性。根据地理分布和遗传构造,RAPD和ISSR的基于UPGMA的树状图证实了不同基因型将不同的基因型放置在不同的簇和子集群中。Family SH-7与RAPD和ISSR研究所揭示的那样发出了Outliner。