摘要。多模式图像的使用通常可以改善分段。但是,由于临床限制,完整的多模式数据集通常不可用。为了解决这个问题,我们提出了一个新颖的mul-timodal分割框架,该框架可通过使用利益区域(ROI)细心的模态完成,可以使缺少模态固定。我们使用ROI专注的跳过连接专注于与分割相关的收件,以及结合肿瘤ROI的关注点和分割概率图的关节歧视者,以学习与分割与分割相关的共享潜在表示。我们的方法在脑部分割挑战数据集中得到了285例,该数据集的全部肿瘤,肿瘤核心和增强肿瘤的三个区域。它也是在缺血性卒中病变分割挑战数据集上的带有28例梗塞病变的阀门。我们的方法在强大的多模式分割中优于最先进的方法,分别为三种类型的脑肿瘤区域的平均骰子分别为84.15%,75.59%和54.90%,中风病变的平均骰子为48.29%。我们的方法可以改善需要多模式图像的临床工作流程。
TSUGE Tetsuya*、SATO Yukie*2、NAKAGAWA Hitoshi* *日本开放大学,日本千叶县美滨区若叶 2-11 号,邮编 261-8586 *2 金泽星陵大学,日本石川县金泽市御所町牛石 10-1 号,邮编 920-8620
在FAL3中,订户应通过向RP提出身份验证器来验证,除了断言。此处使用的身份验证者也称为绑定的身份验证者和sec。。例如,如果订户在IDP和RP之间执行联邦登录过程,则RP将提示用户提供链接到RP用户帐户的界限验证者。FAL3中介绍的界面验证者不需要与订户对IDP身份验证时使用的身份验证者相同。主张来识别订户,并且BOUND身份验证者给出了试图登录的一方的最高概率是由主张确定的订户。请注意,直到使用界面验证者进行身份验证,RP验证了身份验证器是否正确链接到主张指示的RP订户帐户,才能实现FAL3。
图 1 在经典计算机上使用不同的轨道基组初始化为不同自旋多重性的 LiH 和 TiH 双原子分子的预测 CCSD 键解离曲线。预测的 TiH 基态配置会根据所选的轨道基组而变化。基态配置用实心标记表示,而较高能量配置用空心标记表示。
用于模拟热平衡量子多体系统的可扩展量子算法对于预测有限温度下量子物质的性质非常重要。在这里,我们描述并测试了最小纠缠典型热态 (METTS) 算法的量子计算版本,我们采用自适应变分方法来执行所需的量子虚时间演化。我们将该算法命名为 AVQMETTS,它动态生成紧凑且针对特定问题的量子电路,适用于嘈杂的中尺度量子 (NISQ) 硬件。我们在状态向量模拟器上对 AVQMETTS 进行基准测试,并对一维和二维中的可积和不可积量子自旋模型进行热能计算,并展示了电路复杂性的近似线性系统尺寸缩放。我们进一步绘制了二维横向场 Ising 模型的有限温度相变线。最后,我们使用现象学噪声模型研究噪声对 AVQMETTS 计算的影响。
变分量子算法 (VQA) 是经典神经网络 (NN) 的量子模拟。VQA 由参数化量子电路 (PQC) 组成,该电路由多层假设(更简单的 PQC,与 NN 层类似)组成,这些假设仅在参数选择上有所不同。先前的研究已将交替分层假设确定为近期量子计算中潜在的新标准假设。事实上,浅层交替分层 VQA 易于实现,并且已被证明既可训练又富有表现力。在这项工作中,我们引入了一种训练算法,可指数级降低此类 VQA 的训练成本。此外,我们的算法使用量子输入数据的经典阴影,因此可以在具有严格性能保证的经典计算机上运行。我们证明了使用我们的算法在寻找状态准备电路和量子自动编码器的示例问题中将训练成本提高了 2-3 个数量级。
虽然对海洋二氧化碳去除(MCDR)的研究扩大了速度,但对单个MCDR选项的风险和好处的重要未知数仍然存在。本文分析了对MCDR的专家理解的假设和期望,重点是对这一新兴气候行动领域负责任治理的核心问题。利用了与参与MCDR研究项目的专家进行学术和企业家精神的访谈,我们重点介绍了四个主题紧张关系,这些主题紧张局势使他们的思维定向,但在科学和技术评估中通常是未陈述或隐含的:(1)“自然性”作为MCDR方法评估的标准的相关性; (2)通过循证建设的替代范式来加速研发活动的需要; (3)MCDR作为一种废物管理形式的框架,反过来又将产生新的(目前知之甚少)的环境污染物形式; (4)对包容性治理的承诺,在确定MCDR干预措施中的特定利益相关者或选民方面的困难。尽管对这四个问题的专家共识不太可能,但我们建议确保考虑这些主题的方法丰富有关新型MCDR能力的负责发展的辩论。
自动勾勒出脑磁共振图像 (MRI) 中异常的能力对计算机辅助诊断至关重要。无监督异常检测方法主要通过学习健康图像的分布并将异常组织识别为异常值来工作。在本文中,我们提出了一种切片检测方法,该方法首先在两个不同的数据集上训练一对自动编码器,一个数据集包含健康个体,另一个数据集包含正常和肿瘤组织的图像。接下来,它根据图像编码与仅对健康图像进行训练的自动编码器获得的重建编码之间的潜在空间距离对切片进行分类。我们通过对 HCP 和 BRATS-2015 数据集进行的一系列初步实验验证了我们的方法,结果表明所提出的方法能够将脑部 MRI 分为健康和不健康。
我们开展了一项研究来评估梯度提升算法在岩爆评估中的潜力和稳健性,建立了一个变分自动编码器(VAE)来解决岩爆数据集的不平衡问题,并提出了一种针对基于树的集成学习的多级可解释人工智能(XAI)。我们从现实世界的岩爆记录中收集了537个数据,并选择了四个导致岩爆发生的关键特征。首先,我们使用数据可视化来深入了解数据的结构,并进行相关性分析以探索数据分布和特征关系。然后,我们建立了一个VAE模型来为由于类别分布不平衡而产生的少数类生成样本。结合VAE,我们比较和评估了六种最先进的集成模型,包括梯度提升算法和经典逻辑回归模型,用于岩爆预测。结果表明,梯度提升算法优于经典的单一模型,而 VAE 分类器优于原始分类器,其中 VAE-NGBoost 模型的结果最为理想。与针对不平衡数据集结合 NGBoost 的其他重采样方法(例如合成少数族群过采样技术 (SMOTE)、SMOTE 编辑最近邻 (SMOTE-ENN) 和 SMOTE-tomek 链接 (SMOTE-Tomek))相比,VAE-NGBoost 模型的效果最佳。最后,我们使用特征灵敏度分析、Tree Shapley 附加解释 (Tree SHAP) 和 Anchor 开发了一个多级 XAI 模型,以深入探索 VAE-NGBoost 的决策机制,进一步增强基于树的集成模型在预测岩爆发生方面的可靠性。
试图在大型系统上达到完全精确度显然面临着所谓的“指数墙”,这限制了最精确方法对更复杂的化学系统的适用性。到目前为止,用经典超级计算机执行的最大计算量也只包括数百亿个行列式 4 ,有 20 个电子和 20 个轨道,随着大规模并行超级计算机架构的进步,希望在不久的将来解决接近一万亿个行列式(24 个电子、24 个轨道)的问题。5 鉴于这些限制,必须使用其他类别的方法来近似更大的多电子系统的基态波函数。它们包括:(i) 密度泛函理论 (DFT),它依赖于单个斯莱特行列式的使用,并且已被证明非常成功,但无法描述强关联系统 6 – 8 ; (ii) 后 Hartree - Fock 方法,例如截断耦合团簇 (CC) 和组态相互作用 (CI) 方法,即使在单个 Slater 行列式之外仍然可以操作,但由于大尺寸分子在 Slater 行列式方面的计算要求极高,因此不能应用于大尺寸分子。9 – 16 一个很好的例子是“黄金标准”方法,表示为耦合团簇单、双和微扰三重激发 CCSD(T)。事实上,CCSD(T) 能够处理几千个基函数,但代价是巨大的运算次数,而这受到大量数据存储要求的限制。17 无论选择哪种化学基组(STO-3G、6-31G、cc-pVDZ、超越等),这些方法都不足以对大分子得出足够准确的结果。 Feynman 18,19 提出的一种范式转变是使用量子计算机来模拟量子系统。这促使社区使用量子计算机来解决量子化学波函数问题。直观地说,优势来自于量子计算机可以比传统计算机处理“指数级”更多的信息。20 最近的评论提供了有关开发专用于量子化学的量子算法的策略的背景材料。这些方法包括量子相位估计(QPE)、变分量子特征值求解器(VQE)或量子虚时间演化(QITE)等技术。21 – 24 所有方法通常包括三个关键步骤:(i)将费米子汉密尔顿量和波函数转换为量子位表示;(ii)构建具有一和两量子位量子门的电路;(iii)使用电路生成相关波函数并测量给定汉密尔顿量的期望值。重要的是,目前可用的量子计算机仍然处于嘈杂的中型量子(NISQ)时代,并且受到两个主要资源的限制: