与脉冲设计方法相关的脉冲合成器的拓扑结构基于 H 桥。尽管已经提出了在 UWB 应用中使用 H 桥进行脉冲整形的建议 [2],但所提出的结构已被修改,以允许对脉冲包络进行数字控制。此外,如图 4.a 所示,H 桥由差分压控环形振荡器 (VCO;详见 [7]) 驱动(而不是 [2] 中的压控延迟线),以便能够生成 IEEE 标准所要求的高持续时间脉冲。VCO 还交替控制传输门耦合 (TGU1、TGD1) 和 (TGU2、TGD2),以交替将电流送入负载,从而产生零均值脉冲。因此,如图 4.a 所示,脉冲包络由 4 个传输门组 TGx(TG1 至 TG4)控制,这些传输门组修改了进入输出负载的电流。信号 Sx(S1 至 S4),
以可靠性为中心的维护 (RCM) 是用于确定最有效维护方法的过程。它涉及确定采取哪些措施可以降低故障概率,并且哪些措施最具成本效益。它寻求基于条件的措施、其他基于时间或周期的措施或运行至故障方法的最佳组合,如图 1-1 所示。每种策略的主要特征如图 1-1 中的块下方所示。RCM 是一个持续的过程,它从操作系统性能中收集数据,并使用这些数据来改进设计和未来的维护。这些维护策略不是独立应用的,而是集成在一起以利用各自的优势,以优化设施和设备的可操作性和效率,同时最大限度地降低生命周期成本。第 2 章阐述了 RCM 的要素,第 3 章定义并讨论了维护策略。
为了阐明 SiNRs/Ag(110) 中 1D 狄拉克带的起源,我们将 SiNRs/Ag(110) 的展开能带结构投影到不同的原子层,如图 S4(a)-S4(d) 所示。可以看出,狄拉克带主要位于表面 Si 层,在最顶层的 Ag 层只有少量的剩余信号。最顶层 Ag 层中的剩余信号表示 Si 和 Ag 之间的有限能带杂化。第 8 个 Ag 层仅包含 Ag(110) 的体能带,如图 S4(c) 所示。通过比较图 S4(a) 和 S4(c),我们还可以得出结论,狄拉克带附近强度较高的能带来自 Ag(110) 的体能带。事实上,由于我们计算中的平板几何形状,这些能带来自 Ag 体 sp2 能带的子能带。为了研究狄拉克能带的轨道组成,我们将展开的能带结构投影到 Si s 和 Si ad 原子的不同轨道上,如图 S4(e)-S4(l) 所示,发现狄拉克能带主要由 Si spz 轨道组成。这些结果与我们的 TB 分析结果一致,即 Si s 和 Si ad 原子的 pz 轨道是解耦的。
评估螺旋元件疲劳损伤的基础是几个热点的长期循环分布,即螺旋横截面上的关键位置,代表一定数量的螺旋位置,即一个螺距内螺旋线上的位置,如图 2-2 所示。
亚历山大·弗莱明发现青霉素。(A)金黄色葡萄球菌菌落生长良好,位于培养皿的这一区域。(B)由于青霉菌(一种霉菌)菌落(如图C所示)产生抗生素(青霉素),菌落发育不良。
分析使我们能够选择一个病毒寡肽序列,其侧面的可变区域(VR)作为合适的目标(图。1a)用于使用SELEX隔离和识别适体(如图1b)。在筛选期间,
读出量子位,如图 1a 所示。图 1b-d 表示量子计算机从传统方法演变为可扩展架构。量子位是量子计算机中的基本计算块,由于其叠加和纠缠特性,可实现指数级更快的计算。量子位是一个两级系统,可以处于量子态 j ψ i ,可以表示为其两个计算基态 j 0 i 和 j 1 i 的叠加。这两个状态占据不同的层次,与经典数字逻辑零和一完全类似。量子位的状态有一个独特的注释,即布洛赫球面单位球表面上的一个点。如图 1e 所示,布洛赫球的北极和南极分别代表 j 0 i 和 j 1 i 状态,而布洛赫球表面的所有其他点则对应于不同的叠加态 j ψ i = α j 0 i + β j 1 i 。量子叠加态的振幅与平均占空比信号的经典模拟之间可以进行类比。两个电压电平 VDD 和 GND 在进行占空比和平均后,提供 VDD 和 GND 之间的所有电平,S avg = α VDD + β GND,如图 1f 所示。此外,在读出量子态时,输出要么处于 j 0 i 状态,要么处于 j 1 i 状态。同样,在读出经典模拟中的占空比平均信号时,输出要么为 VDD 要么为 GND。
在弹性体上。从左侧喷射的电子主要集中在荧光粉颗粒上,如图 3c-ii 所示。这一结果表明,氟化物荧光粉由于其电负性更强,比 PDMS 聚合物更容易吸引电子。因此,当 CaF 2 -PDMS 界面
离开该装置后,粒子进入磁场为指向+t方向(离开粒子)的恒定均匀磁场(如图1所示)。当进入该区域时,每个粒子都沿-y方向移动。当离开该区域时,每个粒子都沿+y方向移动。
对于给定价格的能源,市场运营商按小时匹配发电厂和消费者。以这种方式匹配发电厂和消费者会产生一个临时平衡点,如图 4 所示,在该点上,电力以系统价格出售