从介电常数和绝缘破坏电场强度的观点出发选择Al 2 O 3 、HfO 2 、SiO 2 。使用这些绝缘膜制作MOS结构样品,并评估绝缘膜的介电击穿场强和介电常数。为了进行评估,我们使用了新推出的浸入式手动探测器。在该评价中,HfO 2 膜表现出最高的介电常数和击穿电场强度。通过简单的器件模拟,发现如果该膜具有这种水平的特性,则它可以用作氧化镓MOSFET的栅极绝缘膜。因此,在本研究中,我们决定使用该HfO 2 薄膜进行MOSFET的开发。由于不仅需要从初始特性而且还需要从长期可靠性的角度来选择绝缘膜,因此我们还考虑了具有第二好的特性的Al 2 O 3 膜作为候选材料I。取得了进展。 2020财年,我们改进了栅极绝缘膜的材料选择和成膜条件。具体地,对于作为栅极绝缘膜的候选的Al 2 O 3 ,为了减少作为沟道电阻增大的因素的栅极绝缘膜/氧化镓界面处的电荷,将Al 2 O 3 /镓我们考虑在成膜后通过热处理去除氧化物界面。图3示出了(a)评价中使用的MOS结构的截面图和(b)界面态密度分布。确认了通过在N 2 气氛中在450℃下热处理10分钟,可以形成界面能级为1×10 12 eV -1 cm -2 以下的良好界面。可知当温度进一步上升至550℃、650℃、800℃时,产生10 12 eV -1 cm -2 量级的界面态并劣化。通过本研究,我们获得了构建晶体管基本工艺过程中的热处理温度的基本数据。
TEAl : 三乙基铝 ( C 2 H5 ) 3 Al TMGa : 三甲基镓 ( CH 3 ) 3 Ga TMIn : 三甲基铟 ( CH3 ) 3 In DETe : 二乙基碲 ( C 2 H5 ) 2 Te DEZn : 二乙基锌 ( C 2 H5 ) 2 Zn CP 2 Mg : 双(环戊二烯基)镁
本文介绍了一种用于雷达应用的新型 X 波段碳化硅 (SiC) 共面波导 (CPW) 单片微波集成电路 (MMIC) 高功率放大器 (HPA) 设计。在设计中,采用了 0.25 μ m γ 形栅极和高电子迁移率晶体管 (HEMT),它们采用了碳化硅基氮化镓技术,因为它们具有高热导率和高功率处理能力。此外,在 8.5 GHz 至 10.5 GHz 的频率范围内,反射系数低于 -10 dB,可产生 21.05% 的分数带宽。此外,MMIC HPA 在 2 GHz 带宽内实现了 44.53% 的功率附加效率 (PAE),输出功率为 40.06 dBm。此外,由于 MMIC HPA 具有高输出功率、宽工作带宽、高 PAE 和紧凑尺寸,因此非常适合用于 X 波段有源电子扫描阵列雷达应用。索引术语 — 有源电子扫描阵列 (AESA) 雷达、共面波导 (CPW)、碳化硅 (SiC) 上的氮化镓 (GaN)、高电子迁移率晶体管 (HEMT)、单片微波集成电路 (MMIC)、高功率放大器 (HPA)。
本发明将薄膜和基底之间存在错配应变时材料行为的变化关联起来。为了量化目的,发明人对沉积在厚蓝宝石/硅基底上的氮化镓 (GaN) 薄膜进行了纳米压痕数值实验,以评估薄膜中的负载与变形。这对于电子工业和 MEMS、NEMS、LED 等设备非常重要,因为变形的微小变化会影响这些设备的性能。印度专利
ISL70040SEH 和 ISL73040SEH 低侧氮化镓 (GaN) 场效应晶体管 (FET) 驱动器以及 ISL70023SEH 和 ISL70024SEH GaN FET 可用于运载火箭和卫星以及井下钻探和高可靠性工业应用中的初级和次级 DC/DC 转换器电源。这些设备为铁氧体开关驱动器、电机控制驱动器电路、加热器控制模块、嵌入式命令模块、100V 和 28V 电源调节以及冗余切换系统供电。
在通常称为升华生长的物理气相传输 (PVT) 中,保持在特定温度下的源材料会升华,其蒸气通过扩散和对流传输到保持在较低温度下的籽晶,在那里可以结晶。碳化硅 (SiC)、氮化镓 (GaN)、氮化铝 (AlN)、氧化锌 (ZnO) 和其他材料作为下一代功率器件引起了人们的关注。这些单晶制造工艺涉及高温和恶劣环境,使用氨和氯化氢等腐蚀性气体。
中国反击的选项 • 对美国农产品、化工产品和飞机零部件进口征收关税 • 汇率贬值和出口退税 • 禁止稀土元素出口;中国刚刚禁止向美国出口镓、锗和锑,切断了美国一半的供应 • 对在华经营的美国公司实施反垄断、国家安全和其他处罚(见下文) • 出售美国国债和机构 • 实现贸易关系多元化,如 RCEP(按市场规模计算最大的自由贸易区)及其加入 CPTPP 的申请,这两者都不包括美国
wen.zhu@baesystems.com (603) 885-5681 关键词:氮化镓 (GaN)、Ka 波段、MMIC、PAE 摘要 本文报告了 AFRL 的 4 英寸 140nm GaN-SiC 技术向 BAE 系统微电子中心 (MEC) 代工厂的转移和生产实施情况。我们将 AFRL 和 BAE 系统 GaN-SiC 的最佳技术集成到用于 Ka 波段和 Q 波段的 6 英寸 140nm GaN-SiC 生产工艺中,这是业界首个 6 英寸 140nm GaN-SiC 生产工艺。本文介绍了脉冲 IV (pIV)、FET 负载牵引、MMIC 性能和可靠性结果。 引言 2018 年,BAE 系统的 MEC 代工厂与 AFRL 合作,将 140nm 4 英寸 GaN-SiC 技术转移到 6 英寸 GaN-SiC。该计划的关键技术目标是通过转移和整合 AFRL 开发的关键工艺技术[1, 2]以及 BAE 系统现有的 GaN MMIC 工艺和能力,在位于新罕布什尔州纳舒厄的 BAE 系统代工厂建立一流的 140nm 氮化镓 (GaN) 生产技术,以实现 6 英寸 SiC 上 GaN 的高性能、高 MRL 工艺[3]。通过这项短栅极高效氮化镓 (GaN) 单片微波集成电路 (MMIC) 可生产性计划,BAE 系统正在满足美国国防部 (DoD) 的迫切需求,即建立一个可供美国国防界使用的开放式 GaN 代工厂,并提供先进的 GaN MMIC 工艺。开放式代工服务 - BAE 系统 BAE 系统 III-V 族化合物半导体代工厂是一项战略资产,可为其电子系统部门提供独特的 MMIC 技术。为美国国防部提供代工服务是为了更有效地利用我们代工厂的产能,锻炼和改进工艺,并加强与国防部外部供应商和政府机构的关系。完成 GaN 生产向 6 英寸晶圆直径的过渡是 140nm 技术活动下的一项关键任务。仅此一项就能将有效代工能力提高 2 倍以上。BAE Systems 目前正在投资其代工厂,更换工具,消除单点故障,同时满足生产需求。
数据可用性声明:支持本研究结果的数据可根据合理要求从通讯作者处获取。1 H. Amano、Y. Baines、E. Beam 等人,2018 年 GaN 电力电子路线图,Journal of Physics D: Applied Physics。51,(2018)。2 K. Husna Hamza 和 D. Nirmal,GaN HEMT 宽带功率放大器综述,AEU - 国际电子和通信杂志。116,153040 (2020)。3 G. Meneghesso、M. Meneghini、I. Rossetto、D. Bisi、S. Stoffels、M. Van Hove、S. Decoutere 和 E. Zanoni,GaN 基功率 HEMT 的可靠性和寄生问题:综述,半导体科学与技术。31,(2016)。 4 JA del Alamo 和 J. Joh,GaN HEMT 可靠性,微电子可靠性。49,1200-1206 页 (2009)。5 M. Meneghini、A. Tajalli、P. Moens、A. Banerjee、E. Zanoni 和 G. Meneghesso,基于 GaN 的功率 HEMT 中的捕获现象和退化机制,半导体加工材料科学。78,118-126 页 (2018)。6 B. Kim、D. Moon、K. Joo、S. Oh、YK Lee、Y. Park、Y. Nanishi 和 E. Yoon,通过导电原子力显微镜研究 n-GaN 中的漏电流路径,应用物理快报。104,(2014)。 7 M. Knetzger、E. Meissner、J. Derluyn、M. Germain 和 J. Friedrich,《用于电力电子的碳掺杂变化与硅基氮化镓垂直击穿之间的关系》,《微电子可靠性》。66,16-21 (2016)。 8 A. Lesnik、MP Hoffmann、A. Fariza、J. Bläsing、H. Witte、P. Veit、F. Hörich、C. Berger、J. Hennig、A. Dadgar 和 A. Strittmatter,《碳掺杂氮化镓的性质,固体物理状态 (b)》。254,(2017)。 9 B. Heying、EJ Tarsa、CR Elsass、P. Fini、SP DenBaars 和 JS Speck,《位错介导的氮化镓表面形貌》,《应用物理学杂志》。 85,6470-6476 (1999)。