人口增长、能源需求增加以及减少温室气体排放的迫切环境行动的需要对人类的能源转换过程的方法和实施提出了挑战,并要求仔细考虑用于设计和评估此类过程的工具和方法。在热力学范畴内,熵生成最小化、能量、能量能、第二定律和环境能分析方法是提供有关资源使用、转换效率和环境影响的定量信息的方法框架。这些方法结合起来,可以在我们未来能源基础设施(例如,增加可再生能源发电、氢能基础设施)的设计和优化中发挥重要作用。这篇小型评论的结构如下:第 2 节介绍能量和能量分析;第 3 节讨论熵生成最小化;第 4 节讨论环境能分析。目的是简要描述这些方法的核心方面,并引导读者阅读文献中进一步发展和说明核心思想的作品。
皇家女子医院 (The Royal) 是澳大利亚首屈一指的妇产专科医院之一,成立于 1820 年,是新南威尔士州第一家妇产科医院。皇家女子医院是新南威尔士州唯一一家为女性提供一级、二级、三级和四级综合服务的医院。主要专业领域包括乳房护理、妇科、妇科肿瘤科、产科、母胎医学、更年期、新生儿重症监护和生殖医学。皇家女子医院在引领护理模式、研究和倡导女性健康问题、生育、分娩和新生儿方面发挥着重要作用,并为有复杂需求的弱势女性提供服务。皇家女子医院的服务包括住院、门诊和社区环境。
我们旨在研究多巴胺在调节bumble蜜蜂中的种姓特异性行为和与蜂ger犬中与交配相关的行为的作用。我们检查了在蜂蜜蜜蜂大脑中编码多巴胺受体的基因的行为,生物胺水平和表达水平的种姓不同,并分析了与多巴胺相关药物对大黄蜂行为的影响。在8天大的妇女中,运动和飞行活动明显更高,而在4至8天大的妇女中,避免光明显低于同一年龄工人。在8天大的妇女中,多巴胺和章鱼的大脑水平明显高于同龄工人,但是种姓之间的酪胺和5-羟色胺水平没有差异。在8天大的妇女中,多巴胺受体基因基因的相对表达水平明显低于同一年龄工人,但其他多巴胺受体基因的表达水平在种姓之间没有差异。多巴胺显着增强了7-9天大的工人的运动和飞行活动,而Dopaine受体拮抗剂Flupentixol抑制了同一妇女的飞行活动和交配接受。这些结果表明,多巴胺在大黄蜂中的妇科特异性行为中起重要作用,并且在女性互联性蜜蜂中具有常见的多巴胺能功能。
光合细菌(如红细菌)的固氮酶依赖性 H 2 生成已被广泛研究。使用基因操作增加 H 2 产量的一个重要限制是缺乏高通量筛选方法来检测可能的过量生产突变体。之前,我们设计了红细菌菌株,使其在 H 2 反应中发出荧光,并利用它们来识别导致 H 2 过量生产的固氮酶 Fe 蛋白突变。在这里,我们使用紫外线在工程 H 2 感应菌株的基因组中诱导随机突变,并使用荧光激活细胞分选从含有 5 × 10 5 突变体的文库中检测和分离 H 2 过量生产细胞。三轮诱变和菌株选择逐渐使 H 2 产量增加了 3 倍。对五种 H 2 过量生产菌株的全基因组进行了测序,并与亲本感应菌株的全基因组进行了比较,以确定 H 2 过量生产的基础。除了转录激活因子 nifA2 之外,与氮固定相关的已知功能没有发生突变。然而,一些突变被映射到能量产生系统和碳代谢相关功能,这些功能可以将还原力或 ATP 提供给固氮酶。在批量培养中,固氮酶抑制的时间过程实验揭示了固氮酶蛋白水平与其 H 2 和乙烯生产活动之间的不匹配,这表明能量受到限制。在恒化器中培养产生的 H 2 始终比相应的批量培养多 19 倍,揭示了选定的 H 2 过量生产菌株的潜力。
例如,现在研究表明,与其他基因相比,物种生存所必需的基因更频繁地通过细胞中的自然机制进行修复,即它们更不容易发生突变 (Huang & Li, 2018; Belfield et al., 2018; Monroe et al., 2022)。此外,染色体的结构和基因的位置都会影响突变率 (Halstead et al., 2022; Monroe et al., 2022)。此外,基因复制起着重要作用,尤其是在植物基因组中 (Wendel et al., 2016; Gaines et al., 2022)。生物特性,如杂草对除草剂的抗性,可以通过基因复制(Gaines 等人,2019)和建立备份功能(Jones 等人,2017)来培养。这些和其他最近的发现正在挑战经典的进化理论,即突变是随机发生的,与它们对生物体的影响(例如适应度成本)无关。
摘要 — 传统上,电力是由大型发电厂生产的。生产能源的成本与燃料成本(例如碳或天然气)以及维护发电厂的成本有关。随着分布式能源的出现,电力可以由一种新型主体直接在电网边缘生产:产消者。产消者是既消耗又发电的实体,例如通过光伏板。产消者生产的电力成本不再与燃料消耗有关,因为来自分布式发电机的能源基本上是免费的。相反,成本与产消者提供的服务应得的报酬有关。所提出的控制策略在上述情况下将有功发电成本降至最低。控制方案要求产消者测量其电压,然后根据连续时间反馈控制律(实际上是投影梯度下降策略)调整注入的电量。提供模拟以说明算法行为。
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年7月29日发布。 https://doi.org/10.1101/2023.02.17.528958 doi:Biorxiv Preprint
石油和石油资源的开采和利用以及将其转化为基本燃料和化学品,对环境产生了严重影响,导致全球变暖和气候变化。此外,化石燃料是有限的资源,很快就会短缺。因此,研究工作越来越侧重于开发化学品和燃料生产的可持续替代品。在这种情况下,依赖微生物的生物过程引起了特别的兴趣。例如,产乙酸菌使用 Wood-Ljungdahl 途径以单碳 C1 气体(CO 2 和 CO)作为唯一碳源生长,并产生有价值的产品,如醋酸盐或乙醇。因此,这些自养生物可用于大规模发酵过程,从丰富的温室气体中生产工业相关化学品。此外,最近已经开发出遗传工具,通过合成生物学方法改进这些底盘生物。本综述将重点介绍遗传和代谢改造产乙酸菌的挑战。它将首先讨论这些生物体中成功进行 DNA 转移的物理和生化障碍。然后将介绍目前为几种产乙酸菌开发的遗传工具,这些工具对于菌株工程巩固和扩大其产品目录至关重要。最后将介绍用于代谢工程目的的最新工具应用,这些工具允许重新定向代谢通量或生产非天然化合物。
摘要 菌毛介导的初始粘附是产肠毒素大肠杆菌 (ETEC) 感染所需的初始和关键步骤。因此,已经开发出针对这些菌毛并诱导特异性抗菌毛抗体以阻断 ETEC 初始粘附的候选疫苗。虽然这种疫苗可以有效预防 ETEC 相关的断奶后腹泻 (PWD),但由于这些抗原之间的免疫异质性,开发一种广泛有效的针对 ETEC 初始粘附的疫苗仍然是一个具有挑战性的问题。在这里,我们应用多表位融合抗原 (MEFA) 技术构建了 FaeG–FedF–FanC–FasA–Fim41a MEFA,使用主要菌毛 K88 和 F18 的粘附亚基作为骨架,它还整合了来自稀有菌毛 K99、987P 和 F41 的粘附亚基的表位;然后我们生成了一个 MEFA 计算模型并在免疫小鼠中测试了这种 MEFA 蛋白的免疫原性。接下来我们通过体外评估其抗菌毛、抗体导向的细菌粘附抑制作用,评估了针对菌毛的 MEFA 作为疫苗候选物有效预防 PWD 的潜力。计算模型表明,所有相关表位都暴露在 MEFA 表面,并且用 MEFA 蛋白皮下免疫的小鼠产生了针对所有五种菌毛的 IgG 抗体。此外,MEFA 蛋白诱导的抗菌毛抗体显著抑制了 K88 + 、F18 + 、K99 + 、987P + 和 F41 + ETEC 菌株对猪小肠 IPEC-1 和 IPEC-J2 细胞系的粘附。综合起来,这些结果表明 FaeG–FedF–FanC–FasA–Fim41a MEFA 蛋白诱导了针对五种目标菌毛的特异性抗菌毛中和抗体。至关重要的是,这些结果显示了菌毛靶向 MEFA 的潜力,并表明它们有望成为一种广泛有效的 PWD 疫苗。关键词:ETEC、PWD、菌毛、MEFA、疫苗
M.D.在德国的卓越策略(EXC 2037和CLICCS)项目编号下,非常感谢DFG的支持。390683824,对汉堡大学地球系统研究与可持续性中心(CEN)的贡献。We are very grateful to our many survey respondents, to David Anthoff, Kenneth Gillingham, Frikk Nesje, James Archsmith, Radley Horton, Jim Stock, Bob Litterman, and seminar audiences at AERE 2022, AURO 2023, CESifo 2023, ASSA 2024, University of Potsdam, University of California San Diego, Columbia Business School, Harvard肯尼迪学校(Kennedy School)和在皮克(Pik)向罗伯特·鲍(Robert Bao)寻求技术援助的有益评论,并向约翰娜·达姆斯塔特(Johanna Darmstadt),卢克·埃斯普朗(Luc Esprabens),戴维·卢修斯(David Esprabens),戴维·卢修斯(David Lucius),尼尔·斯坦布雷赫(Nele Steinbrecher),亨利·威廉姆斯(Henry Williams),安吉拉·郑(Angela Zeng),尤其是马克·卢斯蒂格(Mark Lustig),以提供出色的研究帮助。本文所表达的观点是作者的观点,不一定反映国家经济研究局的观点。
