避免功能化会导致更好的原子经济以及毒性较小的反应性物种和副产品。这一切都会导致较低的SCI。尽管DAP具有明显的优势,但与其他常规途径相比,由此产生的材料表现不佳。与Stille制成的聚合物相比,直接芳基聚合物O e eN具有较低的分子量23,并且缺陷的患病率更高。24个同源物缺陷是由随后的链中重复自我的随后的单体而变化的。这是由芳基亲核试剂(AR - H)和DAP中的芳基电到(AR - BR)引起的,反应性更接近。Accordingly, the C – H bond must be su ffi ciently active to undergo reaction and prevent homocoupling of the dibrominated monomer – a side reaction also seen in Stille and Suzuki coupling despite highly orthog- onal reactivity of the monomers in those polymerization
在四个月时等血浆中的敏感性,特应性湿疹或食物过敏的婴儿的五,三和两个SCFA的浓度分别较低。logistic回归模型显示,每SD:0.41(0.19 - 0.91),形成,琥珀酸和葡萄糖和敏化之间的显着负面社会[或adj(95%CI); 0.19(0.05 - 0.75);调整了母体过敏后,0.25(0.09 - 0.66)和乙酸和特应性湿疹之间[0.42(0.18 - 0.95)]。婴儿和母体血浆SCFA浓度密切相关,而牛奶SCFA浓度与两者无关。丁酸和映酸的浓度富含100倍左右,在母亲的牛奶中,ISO丁酸和瓣膜酸在3-5倍左右,而其他SCFA在牛奶中的流行程度少于血浆。
本文提出将氨基酸改性氧化石墨烯衍生物 (GO-AA) 作为活性材料,用于捕获水介质中的有机污染物并进行电化学检测。草甘膦 (GLY) 是一种存在于许多水体中的除草剂,被选为基准物质,以测试这些材料的电活性有效性,从而为捕获事件提供直接证据。通过环氧环开环反应将 L -赖氨酸、L -精氨酸或 L -蛋氨酸接枝到 GO 表面,促进氨基酸结合并伴随 GO 的部分还原。合成过程导致电荷电阻从 GO 的 8.1 K Ω 降至各种 GO-AA 的 0.8 – 2.1 K Ω,从而支持这些材料在电化学传感中的适用性。所得 GO-赖氨酸、GO-精氨酸和 GO-蛋氨酸用于从水中吸附 GLY。 GO-Lysine 与 GLY 的相互作用最强,1 小时后的去除效率为 76%,大约是工业基准吸附剂颗粒活性炭的两倍。当用作活性材料捕获 GLY 并进行电化学检测时,GO-AA 的性能也优于原始未改性材料。GO-Lysine 表现出最佳灵敏度,即使浓度低至 2 μ g/L 也能识别水中的 GLY。分子动力学模拟证实,这种材料增强的性能可归因于赖氨酸部分和 GLY 之间的氢键和盐桥相互作用,而氢键和盐桥相互作用源于氢键和盐桥相互作用。
我们提出了一项详细的研究,该研究对具有连续体的quasibound状态的机械符合光子晶体的微腔。最近预计此类系统将减少Fabry-Pérot-type光学机械腔中的光损失。但是,它们需要两个相互面对的光子晶体平板,这对实验实现构成了巨大的挑战。我们研究了如何简化这样的理想系统,并且仍然在连续体中表现出quasibound状态。我们发现,面向分布式的bragg反射的悬浮的光子晶体平板实现了连续体中具有准态状态的光力学系统。在该系统中,可以消除辐射腔损失,以至于仅由材料吸收的耗散性损失占主导地位。这些建议的光力学腔设计预计将具有超过10 5的光学质量因子。
推动是一项必不可少的非划算操作技能,用于任务,从预抓操作到场景重新排列,关于场景中的对象关系的推理,因此在机器人技术中广泛研究了推动动作。有效使用推动动作通常需要了解受操纵对象的动态并适应预测与现实之间的差异。出于这个原因,在文献中对推动作用进行了效果预测和参数估计。但是,当前方法受到限制,因为它们要么建模具有固定数量对象的系统,要么使用基于图像的表示,其输出不是很容易解释并迅速累积错误。在本文中,我们提出了一个基于图神经网络的框架,以根据触点或关节对对象关系进行建模,以效应预测和参数估计推动操作。我们的框架在真实和模拟环境中都得到了验证,这些环境包含不同形状的多部分对象,这些对象通过不同类型的关节和具有不同质量的对象连接,并且在物理预测上的表现优于基于图像的表示。我们的方法使机器人能够预测并适应其观察场景时推动动作的效果。它也可用于使用从未看过的工具进行工具操作。此外,我们在基于机器人的硬盘拆卸的背景下证明了杠杆起作的6D效应预测。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
为了增强轨道几何维护计划并降低基础设施成本,准确预测由镇流器和子级别的循环负载引起的累积永久性轨道变形(沉降)对于铁路基础设施管理者至关重要。本文提出了一种新的方法,可以基于一项用于评估短期和长期轨道性能的混合方法研究的广泛参数研究,以降低计算成本来预测长期结算。将各种机器学习技术进行比较并采用用于开发预测模型,这些模型使用归档的压载轨道演示者的测量结果进行了验证。使用多个指标评估每个模型的性能和准确性,并进行了敏感性分析以识别有影响力的解释变量。值得注意的是,开发的随机森林模型与现场测量的定居数据表现出了良好的一致性。这种方法弥合了差距是数值模拟和经验数据,从而对永久轨道变形有了改进的整体理解。该方法具有在铁路轨道维护和更新管理的计算决策支持系统中实施的潜力。
在过去的二十五年中,MAX 相及其衍生物 MXenes 已成为材料研究的焦点。这些化合物无缝融合了陶瓷和金属特性,具有高导热性和电导性、机械强度、低密度和耐极端条件性。它们的多功能性使其成为各种应用的有希望的候选材料,特别是在用于氢气释放的先进光催化和电催化中。此外,MAX 相和 MXenes 是潜在的储氢材料,具有独特的结构,可为高效的氢气储存和释放提供充足的空间,这对于燃料电池等清洁能源技术至关重要。本综述旨在全面分析它们在光催化、电催化和储氢中的作用,重点关注它们的层状晶体结构。MAX 相集成了优越的金属和陶瓷属性,而 MXenes 提供可调节的电子结构,可增强催化性能。持续探索对于充分发挥其潜力、推动清洁能源技术及其他领域至关重要。
蚊子(Culicidae)代表全球主要的媒介昆虫,它们还居住在世界上许多陆地和水生栖息地。DNA条形码和元法编码现在广泛用于涉及蚊子的研究和常规实践中。但是,这些方法依赖于由代表分类学凭证标本的条形码序列组成的数据库中可用的信息。在这项研究中,我们评估了主要在线数据库中蚊子的公共数据的可用性,专门针对Culicidae:COI及其2的两个最广泛使用的DNA条形码标记。此外,我们对影响物种覆盖范围的可能因素(即在线数据库中覆盖的物种的百分比)对不同国家的COI以及COI的DNA条形码间隙的出现进行检验。我们的发现显示了存储库公开可用的数据差异,Bold + GenBank的COI的分类学或物种覆盖率为28.4–30.11%,而GenBank的ITS覆盖率为12.32%。非洲,澳大利亚和东方的生物地理区域的覆盖范围最低,而近乎度,果皮和大洋洲的覆盖范围最高。新热带区域具有中间覆盖范围。通常,蚊子多样性和较高数量的医学重要物种的覆盖率较低。此外,较高数量的特有物种的国家往往具有更高的覆盖范围。我们希望这项研究可以帮助指导蚊子的区域物种清单,并为所有蚊子物种的DNA条形码提供公开可用的参考文献库。尽管我们的DNA条形码间隙分析表明,需要在数据库中可用的一半蚊子中修改物种边界,但必须收集其他数据以确认这些结果并允许解释DNA条形码间隙的发生。
摘要:维护设备对于增加生产能力和减少生产时间至关重要。随着数字化的出现,行业能够访问大量数据,这些数据可通过实施预测性维护来确保其长期的生存能力和竞争优势。因此,本研究旨在使用来自汽车行业公司的公司的大数据来证明对机器人单元的预测维护应用。开发了一个超参数长期记忆(LSTM)模型,结果表明该模型能够以良好的精度预测失败的一天。分析了进行实际工业计划所固有的困难,并提出了改进建议。
