从经济角度来看,耐久性是热冲压模具的关键因素。通过沉积新材料而不是更换来翻新模具是一种降低成本的有效方法。为此,通过定向能量沉积的方式将一种新开发的马氏体时效钢 (NMS) 熔覆在热作工具钢上。经过优化的回火后,对熔覆的 NMS 进行高温暴露以检查抗软化性能。利用光学显微镜 (OM)、X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、俄歇电子能谱 (AES) 和透射电子显微镜 (TEM) 的组合,系统地表征了材料的微观结构演变。熔覆钢中的沉淀物被鉴定为 Laves 相。该相的粗化被认为是钢在高温下热软化的主要原因。还使用修订的 Langer-Schwartz-Wagner (LSW) 模型模拟了粗化行为,该模型与实验观察结果非常吻合。此外,成功应用了沉淀强化数学模型来评估钢的软化行为。该模型可用于预测所研究的工具钢在高温使用过程中的硬度/强度变化。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
随着社会电气化趋势,机场面临着不可避免的电动汽车(电动汽车)和电动航空潜在升高(EA)的不可避免的过渡。对于航空,短途航班首先是燃料交换到电气运输的排队。这项工作研究了Visby,瑞典的机场以及EA和EV充电对电力系统的影响。它使用了一年操作中测得的机场负载需求以及模拟的EA和EV充电配置文件。太阳能光伏(PV)和电池电池储能系统(BES)进行了建模,以分析潜在的技术 - 经济增长。用四种方式对BESS电荷和放电控制进行建模,包括新型的多目标(MO)调度,以结合自消耗(SC)增强和峰值功率。将每个模型方案进行比较的峰值剃须能力,SC速率和付款额(PBP)。还评估了BESS控件的年度退化和相关成本。结果表明,新颖的MO调度在峰顶剃须和SC方面表现良好,从而有效地减少了Bess的闲置时期。MO调度还通过名义经济参数导致电池控制最低的PBP(6。9年)。此外,对PBP的灵敏度分析表明,峰值关税显着影响BESS投资的PBP。
摘要 我们研究了光场与一维 (1D) 半无限波导末端附近的原子耦合的三种放大过程。我们考虑了两种设置,其中驱动在三能级原子的裸基或修饰基中引起粒子数反转,以及一种设置,其中放大是由于驱动的两能级原子中的高阶过程引起的。在所有情况下,波导的末端都充当光的镜子。我们发现,与开放波导中的相同设置相比,这以两种方式增强了放大。首先,镜子迫使原子的所有输出都朝一个方向传播,而不是分成两个输出通道。其次,镜子引起的干涉使得能够调整原子中不同跃迁的弛豫速率比,以增加粒子数反转。我们量化了由于这些因素而导致的放大增强,并表明可以在超导量子电路实验中用标准参数证明这一点。
能源管理是适用于智能建筑物(SBS)的微电网(MGS)的主要挑战之一。因此,更多的研究是必不可少的,要考虑建模和操作方面,以利用系统的即将到来的不同应用程序。本文介绍了一种新型的能源管理建筑模型,该模型基于完整的监督控制和数据获取(SCADA)系统的职责,其中包括MG实验室(LAB)测试床,该模型在罗马萨皮恩扎大学的电气和能源工程系中名为Lambda。Lambda MG实验室以小规模A SB模拟,并与Dieee电网连接。lambda mg由光伏发电机(PV),电池能量存储系统(BESS),智能开关板(SW)以及不同的分类负载(关键,必不可少的和正常)组成,其中一些是可管理的且可控制的(照明,空调,空调,空调,智能插头)。Lambda实施的目的是使Diaee Smart用于节能目的。在Lambda实验室中,通信体系结构包括由两个主要国际标准(电气和技术监控系统的工业序列标准)和KONNEX(商业和家庭建筑自动化的开放标准)进行的大师/奴隶单位和执行器组成。使电气部门的智能原因从主电网中降低所需的电源。因此,为了实现目标,已经以两种模式进行了研究。最后,在不同的情况下对拟议的模型进行了研究,并从经济方面进行了评估。最初,基于SCADA系统的实时模式,该模式揭示了不同来源和负载的实际日常功耗和生产。接下来,将模拟零件分配给基于能量管理系统的主网格,负载和BES充电和放电的行为。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
在本研究中,我们展示了如何使用量子计算来评估分子的电子密度。我们还认为电子密度可以成为未来量子计算的有力验证工具,而传统量子化学可能无法解决这一问题。电子密度研究是化学、物理学和材料科学等多个领域的核心。霍恩伯格-科恩定理规定,电子密度唯一地定义了电子系统的基态特性。1通过赫尔曼-费曼定理,2电子密度提供了分子内作用力的信息。3,4作为物理科学中信息最丰富的可观测量之一,5-10密度为密度泛函理论 (DFT) 奠定了基础,DFT 是一种预测多电子系统特性的形式化方法。11由于实验是真理的仲裁者,所以责任通常落在电子密度上。重要的是,电子密度可以通过细化X射线衍射和散射数据来重建,9例如使用多极模型、5-8、10X射线约束波函数12或最大熵方法。13我们工作的一个动机是
能源弹性是能源政策和研究的重要焦点,因为能源系统正面临越来越多的挑战,例如由于可再生能源生产增加而导致的电力短缺,以及极端天气导致的停电风险。通常,在这些情况下,能源弹性侧重于基础设施和确保电力供应不受干扰。本文提出了一个关于弹性的补充观点,以家庭为研究弹性的起点。基于对多个学科弹性的理解,我们提出了家庭能源弹性的定义,可用于探索家庭如何在电力供应不稳定的情况下确保未来生活良好。此外,我们借鉴了能源富裕环境下未来家庭能源使用的当前想法(备用能源、能源效率、灵活性和能源自给自足),以创建一个探索家庭能源弹性的框架。我们发现不同想法之间存在多样性的潜力,而这种多样性并不总是存在于主流的未来能源使用愿景中。从家庭能源弹性的角度来看,我们希望挑战电力需求不可协商的观念,并揭示支持家庭在不确定的未来变得更具弹性的机会。
集体自旋波激发,镁元素是下一代Spintronics设备的有前途的准颗粒,包括用于信息传输的平台。在量子大厅铁磁体中,检测这些电荷 - 中性激发依赖于以多余的电子和孔的形式转化为电信号,但是如果多余的电气和孔相等,则检测到电信号是挑战性的。在这项工作中,我们通过测量镁产生的电噪声来克服这一缺点。我们使用石墨烯的Zeroth Landau级别的对称性破裂的量子厅Ferromagnet来启动镁质。这些镁的吸收在Zeeman能量上方产生过多的噪声,即使平均电信号为零,也仍然有限。 此外,我们制定了一个理论模型,其中噪声是通过边缘通道之间的平衡和传播镁来产生的。 我们的模型还允许我们查明设备中弹道木棒运输的状态。在Zeeman能量上方产生过多的噪声,即使平均电信号为零,也仍然有限。此外,我们制定了一个理论模型,其中噪声是通过边缘通道之间的平衡和传播镁来产生的。我们的模型还允许我们查明设备中弹道木棒运输的状态。
过渡金属二甲化物(TMDS)的扭曲双层揭示了丰富的激子景观,包括混合激子和空间捕获的Moiré激子,占主导地位的材料光学响应。最近的研究表明,在低扭转角度方面,晶格经历了显着的松弛,以最大程度地减少局部堆叠能量。在这里,出现了低能堆叠配置的大域,通过应变使晶格变形,从而影响电子带结构。然而,到目前为止,原子重建对激子能量景观和光学特性的直接影响尚未得到充分了解。在这里,我们采用了微观和材料特异性方法,并预测了重建的晶格中Moiré激子的潜在深度发生了显着变化,并且自然堆叠的TMD TMD同质同层中发生了最大的变化。与刚性晶格相比,我们显示了多个频段的外观,并且捕获位点位置的显着变化。最重要的是,我们预测WSE 2同类体的光学吸收中出现了多发结构 - 与主导刚性晶格的单个峰相比。此发现可以被利用为在天然堆积的扭曲同性恋者中Moiré激子光谱中原子重建的明确特征。
肠球菌包含一组乳酸菌(LAB),具有巨大的用作食品发酵微生物的潜力。不幸的是,由于发生致病性和多药抗性菌株,肠球菌受到了很多负重的关注。在这项研究中,我们使用基因组学来选择44个研究的肠球菌分离株中的安全糖果。 对四十四菌株的基因组进行了充分测序,并评估了毒力和抗生素耐药基因的存在。 属于乳酸肠肠球菌,肠球菌,杜兰肠球菌和泰国肠球菌的19个分离株被认为免受基因组分析的安全性。 评估的二级代谢产物基因簇评估了细菌素的存在,并发现十二个候选物可以分泌抗微生物化合物,可有效针对从奶酪和金黄色葡萄球菌分离出的listeria monocytogenes。 生理表征显示,在dustrial潜力中有19个;所有菌株在42°C时生长良好,酸化1.5小时的速度比乳腺乳酸乳酸菌乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳突乳酸乳杆菌(Lactococcoccus)乳注。 我们得出的结论是,所检查的肠球菌中有很大一部分是安全的,并且可以用作具有固有生物保护能力的优秀食品发酵微生物。在这项研究中,我们使用基因组学来选择44个研究的肠球菌分离株中的安全糖果。对四十四菌株的基因组进行了充分测序,并评估了毒力和抗生素耐药基因的存在。属于乳酸肠肠球菌,肠球菌,杜兰肠球菌和泰国肠球菌的19个分离株被认为免受基因组分析的安全性。的二级代谢产物基因簇评估了细菌素的存在,并发现十二个候选物可以分泌抗微生物化合物,可有效针对从奶酪和金黄色葡萄球菌分离出的listeria monocytogenes。生理表征显示,在dustrial潜力中有19个;所有菌株在42°C时生长良好,酸化1.5小时的速度比乳腺乳酸乳酸菌乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳突乳酸乳杆菌(Lactococcoccus)乳注。我们得出的结论是,所检查的肠球菌中有很大一部分是安全的,并且可以用作具有固有生物保护能力的优秀食品发酵微生物。
气候变化需要大规模部署碳捕获和存储(CCS)。最近的计划表明,到2030年,CCS的容量增加了八倍,但CCS扩展的可行性却是有争议的。使用CCS和其他政策驱动技术的历史增长,我们表明,如果计划在2023年至2025年之间两倍,并且其故障率降低了一半,则CCS到2030年可能会达到0.37 GTCO 2年-1,比大多数1.5°C较低,但比大多数2°C途径更高。保持轨道至2°C将要求在2030-2040 ccs加速至少与2000年代的风力发电一样快,并且在2040年之后,它的增长速度比1970年代至1980年代的核能快。只有10%的缓解途径符合这些可行性限制,几乎所有这些途径描绘了<600 GTCO 2 2100捕获和存储。通过假设CCS计划的失败和生长的速度不如烟气脱硫的速度大约是这一数量的两倍,从而放松约束。
